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Abstract: In this paper, we study Crank-Nicholson difference scheme for
approximate solutions of parabolic nonlocal reverse problem with integral and
Neumann boundary conditions. Stability estimates for its solution are estab-
lished. Via Mathlab framework, we give numerical example with explanation
on computer realization.
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1. Introduction

Reverse parabolic (RP) equations appear in many applications such as mean
field equilibria in economics, plasma physics, fluid dynamics, investigation of
electron beam propagation through the solar corona (see [1, 8, 9, 10, 12, 13, 16]
and references therein). Well-posedness of nonlocal boundary value problems
(BVPs) for RP equation and difference schemes (DSs) for their approximations
were investigated in [2, 4, 5, 6, 7].
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Well-posedness of the RP problem with the corresponding nonlocal integral
condition 




ut(t)−Au(t) = f(t), 0 ≤ t ≤ 1,

u(1) =
1∫
0

µ(γ)u(γ) dγ + ϕ,
(1)

was established in paper [4]. Here and in future, H is an arbitrary Hilbert
space, A : H → H is a self-adjoint positive definite operator (SAPDO) such
that A > δI for identity operator I : H → H and some positive number δ > 0,
µ : [0, 1] → R, f : [0, 1] → H are given functions and ϕ ∈ H is known.

In paper [5], stability estimates (SEs) for solution of Rothe DS for the
approximate solution RP problem (1) were established. In [6], second order of
accuracy difference scheme (ADS) by using A2 was studied. In this work, we
will study Crank-Nicolson DS for approximately solving of RP problem (1) and
establish SEs for its solution.

Denote by [0, 1]τ =
{
ti| ti = iτ, τ = 1

N

}
the uniform grid space for natural

number N , and Cτ (H) = C([0, 1]τ ,H), Banach space of grid functions vτ =
{vi}

i=N
i=1 with vi = v(ti) ∈ H and norm ‖vτ‖Cτ (H) = max

1≤i≤N
‖vi‖H . In addition,

by Cα
τ (H) = Cα([0, 1]τ ,H),

and Cα
1 (H) = Cα

1 ([0, 1]τ ,H) we will denote Banach spaces of grid functions vτ

with the corresponding norms

‖vτ‖Cα
τ (H) = ‖vτ‖Cτ (H) + max

1≤i<i+j≤N

‖vi+j − vi‖H
(jτ)α

,

‖vτ‖Cα
1 (H) = ‖vτ‖

Cα
τ (H)

+ max
1≤i<i+j≤N

(jτ)−α ((N − i)τ)α ‖vi+j − vi‖H . (2)

Let us take tj− 1
2
= tj −

τ
2 , j = 1, ..., N . Assume that

τ
∣∣∣µ(tN− 1

2
)
∣∣∣+ τ

∣∣∣µ(
τ

2
)
∣∣∣+ τ

N−1∑

j=1

∣∣∣µ(tj− 1
2
) + µ(tj+ 1

2
)
∣∣∣ < 2. (3)

Lemma 1. Under assumption (3), there exists bounded inverse Qτ = T−1
τ

for operator

Tτ =
(
1−

τ

2
µ(tN− 1

2
)
)
I −

τ

2
µ(
τ

2
) PN −

τ

2

N−1∑

j=1

[
µ(tj− 1

2
) + µ(tj+ 1

2
)
]
PN+j,

where P =
(
I + Aτ

2

)−1 (
I − Aτ

2

)
.



CRANK-NICOLSON DIFFERENCE SCHEME FOR REVERSE... 275

Proof. It is known that ‖P‖H→H ≤ 1 ([3]). Denote by

q1 =
τ

2

∣∣∣µ(
τ

2
)
∣∣∣
(
1− τλ

2

1 + τλ
2

)N

, q2 =
τ

2

N−1∑

j=1

[
µ(tj− 1

2
) + µ(tj+ 1

2
)
](1− τλ

2

1 + τλ
2

)N+j

.

Applying the definition of function’s norm for SAPDO (see [11]), we have

‖Qτ‖H→H ≤ sup
λ≥δ

1∣∣∣∣1−
τ
2

∣∣∣∣µ(tN−

1
2
)

∣∣∣∣−q1−q2

∣∣∣∣
≤ sup

λ≥δ

1

1− τ
2

∣∣∣∣µ(tN−

1
2
)

∣∣∣∣−
τ
2 |µ(

τ
2
) |−

N−1∑
j=1

∣∣∣∣µ(tj− 1
2
)+µ(t

j+ 1
2
)

∣∣∣∣
τ
2

≤M.
(4)

Lemma 1.1 is proved.

2. Crank-Nicolson DS

Nonlocal integral condition of (1) can be replaced by the second order approx-
imation

uN =

N∑

j=1

tj− 1
2

(
uj + uj−1

2

)
τ + ϕ.

By using Crank-Nicolson DS, we get DS in the following form

uk−uk−1

τ − 1
2 (Auk +Auk−1) = θk, θk = f

(
tk− 1

2

)
, k = 1, .., N,

− τ
2µ(

τ
2 )u0 −

N−1∑
j=1

τ
2

[
µ(tj− 1

2
) + µ(tj+ 1

2
)
]
uj +

(
1− τ

2 µ(tN− 1
2
)
)
uN = ϕ.

(5)

Theorem 2. Assume that θτ ∈ Cτ (H), ϕ ∈ D(A), and (3) is satisfied.
Then, DS (5) is uniquely solvable and for the solutions the following SE

max
0≤j≤N

‖uj‖H ≤M(µ, δ)
(
‖ϕ‖H + ‖θτ‖Cτ (H)

)
(6)

is valid for some positive real constant M(µ, δ) which depends on µ, δ but it is
independent of τ, ϕ, θτ .

Proof. Let us take C =
(
I − Aτ

2

)−1
. From DS (5) it follows

(
I +

A

2

)
uk−1 =

(
I −

Aτ

2

)
uk − τθk , uk−1 = Puk − τCθk, k = 1, ..., N.
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Thus, we can conclude that

uq = PN+quN − τ

q+1∑

i=N

PN−2−iCθi, q = N − 1, ..., 0. (7)

By using (7 ) in nonlocal condition of DS (5 ), we get

− τ
2µ(

τ
2 )

(
PNuN − τ

1∑
i=N

PN−2−iCθi

)
+
(
1− τ

2 µ(tN− 1
2
)
)
uN

−
N−1∑
j=1

τ
2

[
µ(tj− 1

2
) + µ(tj+ 1

2
)
] (

PN+juN − τ
j+1∑
i=N

PN−2−iCθi

)
= ϕ.

Thus, we have

uN = Qτ

{
ϕ− τ2

2 µ(
τ
2 )

1∑
i=N

PN−2−iCθi

− τ2

2

N−1∑
j=1

[
µ(tj− 1

2
) + µ(tj+ 1

2
)
] j+1∑

i=N
PN−2−iCθi

}
.

(8)

Triangle inequality, estimate (4), formulas (7), (8) yield estimate (6). Theorem
2.1 is proved.

Applying formulas (7), (8) in Theorem 2.2 of paper [5], we have the next
theorem on coercive SE for solution of DS (5).

Theorem 3. Assume ϕ ∈ D(A), θτ ∈ Cα
1 (H), and inequality (3) is valid.

Then, the solution of DS (5) satisfies the coercive SE

∥∥∥∥
{

ui−ui−1

τ

}N

1

∥∥∥∥
Cα

1 (H)

+
∥∥∥
{
1
2 (Aui +Aui−1)

}N
1

∥∥∥
Cα

1 (H)

≤ M(µ, δ)
(

1
α(1−α) ‖θ

τ‖Cα
1 (H) + ‖Aϕ‖H

) (9)

for some positive real constant M(µ, δ) which is independent of τ, ϕ, θτ , but
depends on µ, δ.
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3. DS for multidimensional problem

Let Ω = (0, l)n be open cube in Rn, S = ∂Ω, Ω = Ω ∪ S, and
ar : Ω → R,ϕ : Ω → R, µ : [0, 1] → R, f : (0, 1) × Ω → R be given functions,
σ be known positive real number. In addition,
∀r = 1, ..., n, ∀x = (x1, .., xn) ∈ Ω, ar(x) ≥ a0 > 0.

In the work [6], BVP for multidimensional RP equation with nonlocal inte-
gral and second kind of boundary conditions





ut (t, x) +
n∑

r=1
(ar(x) uxr(t, x)) xr − σ u(t, x) = f(t, x),

t ∈ (0, 1) , x ∈ Ω, ∂u
∂−→n

(t, x) = 0, x ∈ S, t ∈ [0, 1] ,

u(1, x) =
1∫
0

µ(γ)u(γ, x)dγ + ϕ(x), x ∈ Ω

(10)

was investigated on well-posedness.
Now, we will construct the second order of ADS to solve BVP (10). Intro-

duce space of grid points

Ω̃h = {xj = (h1m1, · · · , hnmn), m = (m1, · · · ,mn),mr = 0, · · · , Nr,

hrNr = l, r = 1, · · · , n},Ωh = Ω ∩ Ω̃h, Sh = Ω̃h ∩ S.

Denote by Ax
h the operator Ax

hu
h = −

∑n
r=1

(
aru

h
xr

)
xr,jr

+ σuh acting in the

space of grid functions uh(x) which satisfies the condition Dhuh(x) = 0 on
x ∈ Sh. Here D

huh(x) means the second order of approximation of ∂u
∂−→n

(x).
Then, for problem (10) we have the second order of ADS





uh
k
(x)−uh

k−1(x)

τ − 1
2

(
Ax

hu
h
k(x) +Ax

hu
h
k−1(x)

)
= θk(x),

θk(x) = fh(tk− τ
2
, x), tk = kτ, k = 1, ..., N, Nτ = 1, x ∈ Ω̃h,

uhN (x) =
N∑
j=1

µ(tj− 1
2
) τ2

[
uhj (x) + uhj−1(x)

]
+ ϕh(x), x ∈ Ω̃h.

(11)

Here, |h| =

(
n∑

r=1
h2r

) 1
2

and τ are sufficiently small positive real numbers.

Let L2h andW 2
2h be spaces of the grid functions ϕh(x) defined on grid space

Ω̃h, equipped with the appropriate norms

∥∥ϕh
∥∥
L2h

=

(
∑

x∈Ω̃h

|ϕh(x)|2h1 · · · hn

)1/2

,

∥∥ϕh
∥∥
W 2

2h
=

(
∑

x∈Ω̃h

n∑
r=1

∣∣(ϕh(x))xrxr, mr

∣∣2 h1 · · · hn

)1/2

.
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Theorem 4. For the solution of DS (11), the SE

∥∥∥∥
{
uhk

}N

1

∥∥∥∥
Cτ (L2h)

≤M(δ, µ)

[∥∥∥ϕh
∥∥∥
L2h

+

∥∥∥∥
{
θhk

}N

1

∥∥∥∥
Cτ (L2h)

]

is fulfilled, where M(δ, µ) is independent of τ, ϕh(x), and
{
θhk
}N
1
.

Theorem 5. Solution of DS (11) satisfies the following coercivity SE:

∥∥∥
{
τ−1(uhk − uhk−1)

}N
1

∥∥∥
Cα
1 (L2h)

+
∥∥∥
{
1
2

(
Ax

hu
h
k +Ax

hu
h
k−1

)}N
1

∥∥∥
Cα

1 (L2h)

≤M(δ, µ, α)

[∥∥ϕh
∥∥
W 2

2h
+ 1

α(1−α)

∥∥∥
{
θhk
}N
1

∥∥∥
Cα
1 (W 2

2h)

]
,

where M(δ, µ, α) is independent of τ,
{
θhk
}N
1
, and ϕh(x).

Proof. The proofs of Theorems 4 and 5 are based on estimates (6), (9),
assumption (3), and the theorem on the coercivity stability property ([15]) for
the solution of the elliptic difference problem in L2h.

4. Numerical example

To illustrate test example, we consider the following BVP with nonlocal integral
condition





ut(t, x) + (1 + x)2uxx(t, x) + 2(1 + x)ux(t, x)− u(t, x)
= −4e−3t

{(
x2 + 2x + 2

)
cos 2x+ (1 + x) sin 2x

}
,

0 ≤ t ≤ 1, x ∈
(
0, π2

)
,

u(1, x) =
1∫
0

e−su(s, x)ds +
(
e−4+4e−3−1

4

)
cos 2x, x ∈

[
0, π2

]
,

ux(t, 0) = 0, ux(t,
π
2 ) = 0, t ∈ [0, 1] .

(12)

Exact solution of problem(12) is u(t, x) = e−3t cos 2x.

Applying (11) to this problem, we get the second order of ADS in t and x
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for BVP (12):

uk
n−uk−1

n

τ − 1
2

(
−(1 + xn)

2 (u
k
n+1−2uk

n+uk
n−1)

h2 − 2(1 + xn)
(uk

n+1−uk
n−1)

2h

+ukn − (1 + xn)
2 (u

k−1
n+1−2uk−1

n +uk−1
n−1)

h2 − 2(1 + xn)
(uk−1

n+1−uk−1
n−1)

2h + uk−1
n

)

= f(tk−1/2), − 3uk1 + 4uk2 − uk3 = 0,

10uk1 − 15uk2 + 6uk3 − uk4 = 0,−3ukM+1 + 4ukM − ukM−1 = 0,
10ukM+1 − 15ukM + 6ukM−1 − ukM−2 = 0, k = 0, ..., N,

−1
2µ(

τ
2 )τ u

0
n −

N−1∑
j=1

1
2

[
µ(tj −

τ
2 ) + µ(tj+1 −

τ
2 )
]
τ u

j
n

+
(
1− 1

2µ(tN − τ
2 )τ

)
uNn = ϕn, n = 0,M.

(13)

One can write (13) in the following matrix form





Anun+1 +Bnun + Cnun−1 = Rψn, n = 3, ...,M − 3,
−3u1 + 4u2 − u3 = 0, 10u1 − 15u2 + 6u3 − u4 = 0
−3 uM+1 + 4 uM − uM−1 = 0,
10 uM+1 − 15 uM + 6 uM−1 − uM−2 = 0.

(14)

Here, R is identity matrix, ψn , us,
s = n− 1, n, n+ 1 are (N + 1)× 1 column matrices

ψn =
[
ψ0
n ψ1

n · · · ψN−1
n ψN

n

]t
,

us =
[
u0s u1s · · · uN−1

s uNs
]t
, s = n− 1, n, n+ 1,

and An, Bn, Cn are (N + 1)× (N + 1) matrices

An =




0 0 · · · 0 0
an an · · · 0 0
...

. . .
. . .

...
...

0 0
. . . an 0

0 0 · · · an an



, Cn =




0 0 · · · 0 0
dn dn · · · 0 0
...

. . .
. . .

...
...

0 0
. . . dn 0

0 0 · · · dn dn



,

Bn =




s0 s1 · · · sN−1 sN
bn cn · · · 0 0
...

. . .
. . .

...
...

0 0
. . . cn 0

0 0 · · · bn cn



,
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with elements

an = (1+xn)2

2h2 + (1+xn)
2h , bn = 1

τ − (1+xn)2

h2 − 1
2 , cn = − 1

τ − (1+xn)2

h2 − 1
2 ,

dn = (1+xn)2

2h2 − (1+xn)
2h , s0 = − τ

2µ(
τ
2 ), sN = 1− τ

2µ(tN − τ
2 ),

sj = − τ
2

(
µ(tj− 1

2
) + µ(tj+ 1

2
)
)
, j = 1, ..., N − 1.

To solve matrix equation modified Gauss elimination method [14] is used.
We seek solution in the form un = αnun+1 + βnun+2 + γn,

n = 0, ...,M − 2. It is easy to see that

α0 =
4
3R, β0 = −1

3R,α1 =
8
5R, β1 = −3

5R, γ0 = γ1 = O,

αn = −Dn(An + Cnβn−1), βn = 0, γn = Dn(Rψn − Cnγn−1),
Dn = (Bn + Cnαn−1)

−1 n = 2, ...,M − 2.

For unknowns uM and uM+1 we get the system of equation

Q11uM +Q12 uM+1 = G1, Q21uM +Q22uM+1 = G2, (15)

where

Q11 = BM + 4CM , Q12 = AM − 3CM , Q21 = 4αM−2 + βM−2 − 9R,
Q22 = −3αM−2 + 8R,G1 = RψM , G2 = −RγM−2.

Solution of (15) can be derived by formulas

uM+1 = Q−1
22 (G2 − Q21uM ) ,

uM =
(
Q11 −Q12 Q

−1
22 Q21

)−1 (
G1 −Q12 Q

−1
22 G2

)
.

Table 1 shows error computed by

E1 = max1≤k≤N−1max0≤n≤M

∣∣u(xn, tk)− ukn
∣∣ ,

E2 = max1≤k≤N−1

(∑M−1
n=1 (u(xn, tk)− ukn)

2h
) 1

2

for different values of (N,M).
Numerical results presented in Table 1 shows good agreement with obtained

theoretical results on stability of solution of proposed DS to RP BVP with
second kind boundary and integral conditions. We observe that DS (13) has
the second order convergence as it is expected to be.

Table 1. The errors between the exact and the numerical solutions of BVP
(12) for different values of N and M.
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(N,M) E1 E2

(10, 10) 0.13019 0.12041

(20, 20) 0.02412 0.02384

(40, 40) 0.00437 0.00437

(80, 80) 0.00085 0.00085

(160, 160) 0.00021 0.00021

(320, 320) 0.00005 0.00005
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