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Abstract: In this paper, we study solvability of new classes of nonlocal bound-
ary value problems for a second-order elliptic type equation. The considered
problems are multidimensional analogues (in the case of circular domains) of
classical periodic boundary value problems in rectangular domains.

To study the main problem, first, an auxiliary boundary value problem with
inclined derivative is considered for the second order elliptic equation. The main
problems are solved by reducing them to a sequential solution of the Dirichlet
problem and the problem with inclined derivative. Theorems on the existence
and uniqueness of a solution of considered problems are proved.
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1. Introduction

Let x̃ = (x1, ..., xn−1),Ωm =
{

x ∈ Rn : |x̃|2 + |xn|
m < 1

}

, n ≥ 3, m > 1, ∂Ωm =
{

x ∈ Rn : |x̃|2 + |xn|
m = 1

}

be a boundary of the domain Ωm.
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In Ωm we consider an uniformly elliptic operator

A (x,D) =
∂2

∂x2n
+

n−1
∑

p,q=1

apq
∂2

∂xp∂xq
+

n−1
∑

j=1

bj
∂

∂xj
+ c,

where the coefficients apq, bj , c depend only on x̃ = (x1, x2, ..., xn−1) and they
are smooth enough, and c ≤ 0.

For any point x ∈ Ωm we put in conformity a point
x∗ = (x1, x2, ...,−xn) . It is obvious that if x ∈ ∂Ωm, then x∗ ∈ ∂Ωm.

Denote

∂Ω+
m = {x ∈ ∂Ωm : xn ≥ 0} , ∂Ω−

m = {x ∈ ∂Ωm : xn ≤ 0} ,

S = {x ∈ ∂Ωm : xn = 0} ≡ ∂Ω+
m ∩ ∂Ω−

m.

We introduce the operator I∗[u](x) = u(z) |z=x∗ . Let a parameter k take
one of the values k = 1, 2. In Ωm we consider the following problem:

A(x,D)u(x) = f(x), x ∈ Ω, (1)

u(x) + (−1)ku(x∗) = g0(x), x ∈ ∂Ω+, (2)

∂u(x)

∂xn
+ (−1)k

∂u(x∗)

∂xn
= g1(x), x ∈ ∂Ω+, (3)

u(x) = 0, x ∈ S. (4)

Here u(x∗) and ∂u
∂xn

(x∗) mean:

u (x∗) = I∗[u](x),
∂u

∂xn
(x∗) = I∗

[

∂u

∂xn

]

(x).

As a solution of problem (1)-(4) we call a function u(x) from the class
C2 (Ωm) ∩ C1

(

Ω̄m

)

which satisfies conditions (1)-(4) in the classical sense.
Problem (1)-(4) is an analogue of the periodic and antiperiodic problems

for circular domains.
It should be noted that

∂u

∂xn
(x∗) = I∗

[

∂u

∂xn

]

(x) 6=
∂

∂xn
I∗[u](x),

i.e. operator I∗ and differentiation operator ∂
∂xn

do not commute. Moreover,
since

∂2u

∂x2n
(x∗) = I∗

[

∂2u

∂x2n

]

(x) =
∂2

∂x2n
I∗[u](x),

then the following equality holds

A(x,D)u(x∗) ≡ A(x,D)I∗u(x) = I∗A(x,D)u(x). (5)
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Further, if x ∈ S, then x = (x̃, 0) and the corresponding points x∗ =
(x1, x2, ..., xn−1, 0) also belong to the set S. Therefore, u (x) belongs to the
class C1

(

Ω̄m

)

, if the following condition holds:

g0 (x̃, 0) = u (x̃, 0) + (−1)ku (x̃∗, 0)

= (−1)k
[

u (x̃∗, 0) + (−1)ku (x̃, 0)
]

= (−1)kg0 (x̃
∗, 0) , x̃ ∈ S.

However, due to condition (4), the equality u (x̃, 0) = 0, x̃ ∈ S holds, and
therefore, the last condition can be rewritten in the form g0 (x̃, 0) = g0 (x̃

∗, 0) =
0, x̃ ∈ S, i.e.

g0 (x) = 0, x ∈ S. (6)

The following condition is also necessary

∂g0

∂xj
(x)− (−1)k

∂g0

∂xj
(x∗) = 0, x ∈ S, j = 1, 2, ..., n, (7)

and

g1 (x) + (−1)kg1 (x
∗) = 0, x ∈ S. (8)

Furthermore, we will assume that conditions (6) - (8) are satisfied. Note that
similar problems for the Laplace and Poisson equations with normal derivatives
of integer and fractional orders were studied in [1],[2],[3]. Moreover, in [4]
similar problem was studied for a boundary operator with inclined derivative
without degeneracy. We also note that degenerate boundary value problems
with inclined derivative were studied in [5],[6],[7],[8].

2. Uniqueness of Solution

We give the uniqueness theorem for the solution of problem (1)-(4).

Theorem 1. Let k take one of the values k = 1, 2. If a solution of problem
(1)-(4) exists, then it is unique.

Proof. Let k = 1 and u (x) be a solution of the homogenous problem (1)-(4).
Then from condition (2) it follows that

u (x) = u (x∗) ≡ I∗[u](x), x ∈ ∂Ω+
m .
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If x ∈ ∂Ω−
m, then it is obvious that x∗ ∈ ∂Ω+

m. Therefore, from the boundary
value condition (2) for the points x ∈ ∂Ω−

m we get

u (x) = u (x∗) ≡ I∗[u](x), x ∈ ∂Ω−
m.

Consequently, for all x ∈ ∂Ωm we have

u (x)− u (x∗) = 0, x ∈ ∂Ωm .

Denote v (x) = u (x) − u (x∗) . Then applying the operator A(x,D) to v(x),
according to (5), we have

A (x,D) v (x) = A (x,D) u (x)−A (x,D)u (x∗) = 0, x ∈ Ωm.

Hence, the function v (x) is the solution of the following Dirichlet problem:

A (x,D) v (x) = 0, x ∈ Ωm, v (x)|∂Ωm

= 0.

Then, due to the uniqueness of the solution of the Dirichlet problem, v(x) =
0, x ∈ Ω̄m. Therefore u (x) = u (x∗) ≡ I∗[u](x), x ∈ Ω̄m. By the condition of the
problem, u(x) belongs to C1

(

Ω̄m

)

. Thus, from the condition u (x) = u (x∗) , x ∈
Ω̄m, due to the equality:

∂

∂xn
I∗[u] (x) =

∂

∂xn
u (x1, ..., xn−1,−xn)

= −I∗

[

∂u

∂xn

]

(x1, ..., xn−1, xn) ≡ −
∂u(x∗)

∂xn
,

we obtain
∂u

∂xn
(x) = −

∂u

∂xn
(x∗) ≡ −I∗

[

∂u

∂xn

]

(x), x ∈ Ω̄m. (9)

On the other hand, by the boundary value condition (3), we have

∂u

∂xn
(x) =

∂u

∂xn
(x∗) ≡ I∗

[

∂u

∂xn

]

(x), x ∈ ∂Ω+
m,

and
∂u

∂xn
(x) =

∂u

∂xn
(x∗) ≡ I∗

[

∂u

∂xn

]

(x), x ∈ ∂Ω−
m.

Consequently, for all x ∈ ∂Ωm we have

∂u

∂xn
(x) =

∂u

∂xn
(x∗) ≡ I∗

[

∂u

∂xn

]

(x). (10)
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Then, adding the left-hand and right-hand sides of equalities (9) and (10),
we obtain

∂u

∂xn
(x) = 0, x ∈ ∂Ωm.

Therefore, the solution of homogeneous problem (1)-(4) is also solution to
the following problem

A (x,D) u (x) = 0, x ∈ Ωm,
∂u

∂xn
(x)

∣

∣

∣

∣

∂Ωm

= 0, u (x)|S = 0. (11)

In [5] it is proved that the solution of the problem (11) is unique and there-
fore, u(x) ≡ 0, x ∈ Ω̄m.

Let now k = 2. In this case, if u (x) is a solution of the homogenous problem
(1)-(4), then from condition (2) for all point x ∈ ∂Ω+

m we get

u (x) = −u (x∗) , x ∈ ∂Ω+
m.

In its turn, for points ∂Ω−
m :

u (x) = −u (x∗) , x ∈ ∂Ω−
m.

Consequently, for all x ∈ ∂Ωm we have

u (x) + u (x∗) = 0, x ∈ ∂Ωm.

Further, if we denote v (x) = u (x) + u (x∗) , then the function v (x) is a
solution of the Dirichlet problem:

A (x,D) v (x) = 0, x ∈ Ωm, v (x)|∂Ωm

= 0,

and due to the uniqueness of the solution of the Dirichlet problem, v (x) =
0, x ∈ Ω̄m. Therefore, u (x) = −u (x∗) ≡ −I∗[u](x),
x ∈ Ω̄m. Then

∂u

∂xn
(x) = −

∂u

∂xn
(x∗) ≡ −

∂

∂xn
I∗[u] (x) , x ∈ Ω̄m.

Further, as in the case k = 1 from the boundary value condition (3) we
obtain:

∂u

∂xn
(x) = −

∂u

∂xn
(x∗) ≡ −I∗

[

∂

∂xn
u

]

(x) , x ∈ ∂Ω+
m,

I∗

[

∂

∂xn
u

]

(x) ≡
∂u

∂xn
(x∗) = −

∂u

∂xn
(x) , x ∈ ∂Ω−

m,
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and consequently, we have

∂u

∂xn
(x) = −

∂u

∂xn
(x∗) ≡ −I∗

[

∂

∂xn
u

]

(x) =
∂

∂xn
I∗ [u] (x) , x ∈ ∂Ωm.

Hence
∂u

∂xn
(x) = 0, x ∈ ∂Ωm.

In this case the function u (x) satisfies the conditions of the problem (11). Then
u(x) ≡ 0, x ∈ Ω̄m.

3. Existence of Solution

In this section, we prove theorem on the existence and smoothness of a solution
of the problem (1)-(4). Consider the following auxiliary problem

A (x,D) z (x) = 0, x ∈ Ωm,
∂z

∂xn
(x)

∣

∣

∣

∣

∂Ωm

= h(x), z (x)|S = 0. (12)

In [5] the following proposition is proved.

Lemma 2. Let 1− 1
m

< λ, moreover let the number λ+ 1
m

be not integer.
For any function h (x) ∈ Cλ (∂Ωm) a solution of problem (12) exists, is unique

and belongs to the class Cλ+ 1

m

(

Ω̄m

)

.

The following statement is true for the main problem.

Theorem 3. Let k take one of the values k = 1, 2,

1−
1

m
<λ<1, f(x)∈Cλ

(

Ω̄m

)

, g0 (x)∈Cλ+1
(

∂Ω+
m

)

, g1 (x)∈Cλ
(

∂Ω+
m

)

and the matching conditions (6)-(8) be satisfied. Then a solution of the problem

(1)-(4) exists, is unique and belongs to Cλ+ 1

m

(

Ω̄m

)

.

Proof. Let k = 1 and u(x) be a solution of the problem (1)-(4). Consider
the following function:

v (x) =
u (x)− u (x∗)

2
, w (x) =

u (x) + u (x∗)

2
. (13)
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Note that the functions v(x) and w(x) have the following properties:

v (x) = −v (x∗) ≡ −I∗[v](x);w (x) = w (x∗) ≡ I∗[w](x),

∂v (x)

∂xn
= −

∂

∂xn
I∗ [v] (x) = I∗

[

∂

∂xn
v

]

(x) ≡
∂v (x∗)

∂xn
,

∂w (x)

∂xn
=

∂

∂xn
I∗ [w] (x) = −I∗

[

∂

∂xn
w

]

(x) ≡ −
∂w (x∗)

∂xn
.

We find the conditions that the functions v(x) and w (x) will satisfy. Applying
the operator A (x,D) to the function v(x), we have

A (x,D) v (x) =
1

2
[A (x,D)u (x)−A (x,D)u (x∗)]

=
1

2
[A (x,D)u (x)− I∗A (x,D) u (x)]

=
1

2
[f (x)− f (x∗)] , x ∈ Ωm.

Further, from boundary condition (2) it follows that

v (x)|
∂Ω+

m

=
1

2
[u (x)− u (x∗)]

∣

∣

∣

∣

∂Ω+
m

=
1

2
g0(x).

If the point x belongs to the lower part of the boundary, i.e. x ∈ ∂Ω−
m,

then the corresponding point x∗ belongs to the upper part of the boundary,
and therefore, again from the boundary condition (2), we obtain

v (x)|∂Ω−

m

=
1

2
[u (x)− u (x∗)]

∣

∣

∣

∣

∂Ω−

m

= −
1

2
[u (x∗)− u (x)]

∣

∣

∣

∣

x∗∈∂Ω+
m

= −
1

2
g0(x

∗).

Moreover, condition (4) implies

v (x)|S =
1

2
[u (x)− u (x∗)]

∣

∣

∣

∣

S

= 0.

Further, making similar actions with respect to w(x) from equality (13), we
obtain

A (x,D)w (x) =
1

2
[A (x,D)u (x) +A (x,D)u (x∗)]

=
1

2
[f (x) + f (x∗)] , x ∈ Ωm,
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∂w (x)

∂xn

∣

∣

∣

∣

∂Ω+

=
1

2

[

∂u (x)

∂xn
+

∂

∂xn
I∗[u] (x)

]
∣

∣

∣

∣

∂Ω+

=
1

2

[

∂u (x)

∂xn
− I∗

[

∂u

∂xn

]

(x)

]
∣

∣

∣

∣

∂Ω+

=
1

2

[

∂u (x)

∂xn
−

∂u

∂xn
(x∗)

]
∣

∣

∣

∣

∂Ω+

=
1

2
g1(x), x ∈ ∂Ω+

m,

∂w (x)

∂xn

∣

∣

∣

∣

∂Ω−

=
1

2

[

∂u (x)

∂xn
+

∂

∂xn
I∗[u] (x)

]∣

∣

∣

∣

∂Ω−

=
1

2

[

∂u (x)

∂xn
− I∗

[

∂u

∂xn

]

(x)

]
∣

∣

∣

∣

∂Ω−

=
1

2

[

∂u (x)

∂xn
−

∂u (x∗)

∂xn

]
∣

∣

∣

∣

∂Ω−

= −
1

2

[

∂u (x∗)

∂xn
−

∂u (x)

∂xn

]
∣

∣

∣

∣

x∗∈∂Ω+

= −
1

2
g1(x

∗), x ∈ ∂Ω−
m.

Moreover, condition (4) implies

w (x)|S =
1

2
[u (x) + u (x∗)]

∣

∣

∣

∣

S

= 0.

Denote,

f±(x) =
1

2
[f (x)± f (x∗)] , 2g̃0 (x) =

{

g0 (x) , x ∈ ∂Ω+
m

−g0 (x
∗) , x ∈ ∂Ω−

m

,

2g̃1 (x) =

{

g1 (x) , x ∈ ∂Ω+
m

−g1 (x
∗) , x ∈ ∂Ω−

m

.

Let us examine the smoothness of these functions. Let f(x) ∈ Cλ
(

Ω̄m

)

.
Then it is obvious that the functions f±(x) also belong to the class Cλ

(

Ω̄m

)

.

Further, by the hypothesis of the theorem, the function g0 (x) belongs to the
class Cλ+1 (∂Ω+

m) and the matching conditions (6) and (7) are satisfied for
it. Then the function g̃0(x) belongs to the class Cλ+1 (∂Ωm). Similarly, the
function g1 (x) belongs to the class and the matching condition (8) is satisfied
for it. Then the function g̃1 (x) belongs to the class Cλ (∂Ωm). Thus, if u(x)
is a solution of problem (1)-(4), then the functions v(x) and w (x) satisfy the
conditions of the following problems:

A (x,D) v (x) = f−(x), x ∈ Ω, v (x)|∂Ω = g̃0 (x) , (14)

with the additional condition

v (x)|S = 0 (15)
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and

A (x,D)w (x) = f+(x), x ∈ Ωm,

∂w

∂xn
(x)

∣

∣

∣

∣

∂Ωm

= g̃1(x), w (x)|s = 0. (16)

We study the problem (14). We will look for a solution to the problem in the
form v(x) = v1(x) + v2(x), where the functions v1(x) and v2(x) satisfy the
conditions of the following problems

A (x,D) v1 (x) = f−(x), x ∈ Ω, v1 (x)|∂Ω = 0, (17)

A (x,D) v2 (x) = 0, x ∈ Ω, v2 (x)|∂Ω = g̃0 (x) . (18)

The problems (17) and (18) are classical Dirichlet problems, and for smooth
data, solutions to these problems always exist. We need to clarify the smooth-
ness of the solutions to these problems. It was proved in [9] that if 0 <

λ < 1, f−(x) ∈ Cλ(Ω̄m), then solution to the problem (17) belongs to the
class Cλ+2(Ω̄m). The exact smoothness order of the solution to the problem
(18) in the case g̃0 (x) ∈ Cλ+1 (∂Ωm) is given in [5] and the order has the
form Cλ+1(Ω̄m). In addition, due to the matching condition (6), the equality
v2 (x)|S = 0 holds. Thus, if f−(x) ∈ Cλ(Ω̄m),
g̃0 (x) ∈ Cλ+1 (∂Ωm), then the solution to the problem (14) exists and condition
(15) holds for it. Further, we will look for a solution to the problem (16) in the
form w(x) = w1(x)+w2(x), where the functions w1(x) and w2(x) are solutions
of the following problems:

A (x,D)w1(x) = f+(x), x ∈ Ωm, w1(x)|∂Ωm

= 0, (19)

A (x,D)w2(x) = 0, x ∈ Ωm;

∂w2(x)

∂xn

∣

∣

∣

∣

∂Ωm

= g̃1(x)−
∂w1(x)

∂xn
, w2(x)|S = 0. (20)

As we have already noticed, under the conditions of the theorem and the
matching conditions (8), the function f+(x) belongs to the class Cλ(Ω̄m). Then
the solution to the problem (19) exists, is unique and belongs to the class
Cλ+2

(

Ω̄m

)

. Consequently,
∂w1(x)
∂xn

∈ Cλ+1
(

Ω̄m

)

. Further, if g1 (x) ∈ Cλ (∂Ω+
m), then the function g̃1(x) −

∂w1(x)
∂xn

at least belongs to the class Cλ (∂Ωm).
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With these data, according to Lemma 1, the solution to problem (20) exists,

is unique, and belongs to the class Cλ+ 1

m

(

Ω̄m

)

. Therefore, the solution to

problem (16) exists, is unique and also belongs to the class Cλ+ 1

m

(

Ω̄m

)

. Thus,
we will the functions v(x) and w(x) from equalities (13). We show that if
v(x) and w(x) are the solutions to problems (13) and (16), then the function
u(x) = v(x) + w(x) satisfies all the conditions of the problem (1)-(4). Indeed,
applying the operator A(x,D) to the function u(x) = v(x) + w(x), we have

A (x,D) u(x) = A (x,D) v(x) +A (x,D)w(x)

= f+(x) + f−(x) = f(x), x ∈ Ω.

Further, according to the properties of the functions v(x) and w(x), we have

u(x)− u(x∗)|∂Ω+
m

= v(x) + w(x)− (v(x∗) + w(x∗))|∂Ω+
m

= v(x)− v(x∗)|∂Ω+
m

= 2v(x)|∂Ω+
m

= 2 g̃0 (x)|∂Ω+
m

= g0(x).

Similarly,

∂u(x)

∂xn
− I∗

[

∂u

∂xn

]

(x)

∣

∣

∣

∣

∂Ω+
m

=
∂v(x)

∂xn
+

∂w(x)

∂xn

∣

∣

∣

∣

∂Ω+
m

−I∗

[

∂v

∂xn

]

(x)− I∗

[

∂w

∂xn

]

(x)

∣

∣

∣

∣

∂Ω+
m

=
∂w(x)

∂xn
−I∗

[

∂w

∂xn

]

(x)

∣

∣

∣

∣

∂Ω+
m

= 2
∂w(x)

∂xn

∣

∣

∣

∣

∂Ω+
m

= 2 g̃0 (x)|∂Ω+
m

= g1(x).

Thus, the theorem is proved for the case k = 1.
Let now, k = 2 and u(x) be a solution of problem (1)-(4) for this case.

Applying the operator A (x,D) to the function v(x) , as in the case k = 1 from
equality (13), we obtain

A (x,D) v (x) =
1

2
[A (x,D)u (x)−A (x,D)u (x∗)]

=
1

2
[f (x)− f (x∗)] = f−(x), x ∈ Ωm.

Further, from the boundary value condition (2) we obtain

∂v (x)

∂xn

∣

∣

∣

∣

∂Ω+

=
1

2

[

∂u (x)

∂xn
−

∂

∂xn
I∗[u] (x)

]
∣

∣

∣

∣

∂Ω+

=
1

2

[

∂u (x)

∂xn
+ I∗

[

∂u

∂xn

]

(x)

]
∣

∣

∣

∣

∂Ω+

=
1

2

[

∂u (x)

∂xn
+

∂u

∂xn
(x∗)

]
∣

∣

∣

∣

∂Ω+



ON PERIODIC BOUNDARY VALUE PROBLEMS... 269

=
1

2
g1(x), x ∈ ∂Ω+

m.

Similarly, for x ∈ ∂Ω−
m we have

∂v (x)

∂xn

∣

∣

∣

∣

∂Ω−

m

=
1

2

[

∂u (x)

∂xn
−

∂

∂xn
I∗[u] (x)

]
∣

∣

∣

∣

∂Ω−

m

=
1

2

[

∂u (x)

∂xn
+ I∗

[

∂u

∂xn

]

(x)

]
∣

∣

∣

∣

∂Ω−

m

=
1

2

[

∂u (x)

∂xn
+

∂u (x∗)

∂xn

]
∣

∣

∣

∣

∂Ω−

m

=
1

2

[

∂u (x∗)

∂xn
+

∂u (x)

∂xn

]
∣

∣

∣

∣

x∗∈∂Ω+
m

=
1

2
g1(x

∗), x ∈ ∂Ω−
m.

Moreover, condition (4) yields that

v (x)|S =
1

2
[u (x)− u (x∗)]

∣

∣

∣

∣

S

= 0.

Further, for the function w(x) from (13), we get

A (x,D)w (x) =
1

2
[A (x,D)u (x) +A (x,D)u (x∗)]

=
1

2
[f (x) + f (x∗)] = f+(x), x ∈ Ωm,

w (x)|∂Ω+
=

1

2
[u (x) + u (x∗)]

∣

∣

∣

∣

∂Ω+

=
1

2
g0(x),

w (x)|∂Ω−

m

=
1

2
[u (x) + u (x∗)]

∣

∣

∣

∣

∂Ω−

m

=
1

2
[u (x∗) + u (x)]

∣

∣

∣

∣

x∗∈∂Ω+
m

=
1

2
g0(x

∗).

Moreover, from (4) it follows that

w (x)|S =
1

2
[u (x) + u (x∗)]

∣

∣

∣

∣

S

= 0.

We introduce the following functions

2g̃0 (x) =

{

g0 (x) , x ∈ ∂Ω+
m

g0 (x
∗) , x ∈ ∂Ω−

m

, 2g̃1 (x) =

{

g1 (x) , x ∈ ∂Ω+
m

g1 (x
∗) , x ∈ ∂Ω−

m

.

Thus, in this case for the functions v(x) and w(x) we obtain the following
problems:
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A (x,D) v (x) = f−(x), x ∈ Ω;

∂v (x)

∂xn

∣

∣

∣

∣

∂Ωm

= g̃1 (x) , v (x)|S = 0, (21)

A (x,D)w (x) = f+(x), x ∈ Ωm;

w (x)|∂Ωm

= g̃0(x), w (x)|s = 0. (22)

The problems (21) and (22) are investigated in the same way as in the case
k = 1. Under the conditions of the theorem, the solutions to these problems
exist, are unique and belong to the class Cλ+ 1

m

(

Ω̄m

)

. Further, exactly as in
the case k = 1, it can be shown that the function u(x) = v(x) + w(x) satisfies
all the conditions of problem (1)-(4).
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