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Abstract: In this study, the initial value stochastic Schrödinger type problem
in an abstract Hilbert space with the self-adjoint operator is investigated.

Rothe-Maruyama method for the numerical solution of this problem is pre-
sented. Theorem on the convergence of this difference scheme is established. A
numerical example is given.
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1. Introduction

In the literature, stochastic and deterministic type Schrödinger equations have
been extensively studied by many researchers (see [2], [3], [6], [11] and the refer-
ences given therein). Although, in any Hilbert space, numerical approximation
of abstract stochastic Schrödinger equation, using Rothe-Maruyama difference
scheme has not been studied yet. In this article, the initial value problem for
the stochastic Schrödinger equation

idu(t) +Au(t)dt = f(t)dwt, 0 < t < T, u(0) = 0 (1)

in a Hilbert space H with a self-adjoint positive definite operator A is con-
sidered. For the approximate solution of (1), first order of accuracy Rothe-
Maruyama difference scheme is constructed. The results are supported by nu-
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merical implementation. Throughout the paper:

(i) wt is a standard Wiener process given on the probability space (Ω, F, P ).

(ii) f(z) is an element of the space M2
w([0, T ],H1) for any z ∈ [0, T ], where

H1 is a subspace of H.

Here, M2
w([0, T ],H) denote the space of H−valued measurable processes

which satisfy :

(a) φ(t) is Ft measurable, a.e. in t,

(b) E
T
∫

0

‖φ(t)‖2H dt < ∞.

Strong, mild and weak solutions of stochastic differential equations are stud-
ied by many researchers, as an example see [5], [10]. In the present paper,
following [1] and [4], we study the initial value problem (1) in a Hilbert space.

Our main interest in this study is to construct and investigate the single-
step Rothe-Maruyama difference scheme for the numerical solution problem (1).
On the segment [0, T ] we consider the uniform grid space

[0, T ]τ = {tk = kτ, k = 0, 1, ..., N,Nτ = T} (2)

with step size τ > 0 and N is an arbitrary but fixed positive integer.

Note that for the self-adjoint operator A in a Hilbert space H, linear op-
erator eitA is bounded and it is a strongly continuous semigroup (see [8], [9]).
Also,

∥

∥eitA
∥

∥

H→H
≤ 1 (3)

and

u(t) = −i

t
∫

0

ei(t−s)Af(s)dws (4)

is a unique mild solution of the problem (1) under the assumptions (i)− (ii).



ROTHE-MARUYAMA DIFFERENCE SCHEME FOR... 251

2. Rothe-Maruyama Difference Scheme

First, applying the semigroup property of eitA and single step difference scheme
for solution of problem (1) and replacing eiτA by R = (I − iτA)−1, we can
construct the corresponding Rothe-Maruyama difference scheme (see [1])

{

i(uk − uk−1) + τAuk = f(tk−1)∆wk,

∆wk = wk − wk−1, 1 ≤ k ≤ N, u0 = 0
(5)

for the numerical solution of problem (1). By induction, we can write

uk = −i

k
∑

j=1

Rk−j+1f(tj−1)∆wj (6)

for the solution of the Rothe-Maruyama difference scheme (5). Now we show
that Rothe-Maruyama difference scheme (5) for the solution of problem (1) has
a convergence of order 1/2. It is possible under stronger assumption than (ii)
for f(t): case without Wiener process. Assume that

max
0≤t≤T

‖A2f(t)‖H + max
0≤t≤T

‖Af ′(t)‖H ≤ M4. (7)

Moreover, for this we need some related estimates which is stated in the follow-
ing lemma.

Lemma 1. Let A be a self-adjoint positive definite operator, then the
following estimates hold:

‖AαRk‖H→H ≤ M1

(
√
kτ)α

, 1 ≤ k ≤ N, 0 ≤ α ≤ 1, (8)

‖A−β(Rk − eikτA)‖H→H ≤ M2(
√
kτ)β , 1 ≤ k ≤ N, 1 ≤ β ≤ 2. (9)

Here the positive constants M1 and M2 do not depend on k and τ but depend
on α and β, respectively.

Proof. For 0 ≤ α ≤ 1 except the case α = k = 1 using the spectral repre-
sentations of self-adjoint operators we have

‖AαRk‖H→H ≤ sup
−∞<µ<∞

|µα|
(1 + τ2µ2)k/2

.
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Let g(µ) = µα

(1+τ2µ2)k/2
. Then, g(µ) attains its supremum at g′(µ∗) = 0, that is

for (µ∗)2 = α
(k−α)τ2

. The supremum of g(µ) is

g(µ∗) = (
α

(k − α)τ2
)α/2(

1

1 + α
k−α

)k/2 =
αα/2

(
√
kτ)α

(
k − α

k
)(k−α)/2

≤ αα/2

(
√
kτ)α

≤ M1

(
√
kτ)α

.

Now let us consider the case α = k = 1. Using the spectral representation of
self-adjoint operators, we get

‖AR‖H→H ≤ sup
∞<µ<∞

|µ|
|1− iτµ| ≤

1

τ
.

Hence the estimate (8) holds. Now let R(s) = (I − iτsA)−1. Then

‖A−β(Rk(s)− eikτA)‖H→H

= ‖A−β

1
∫

0

d

ds
(Rk(s)eikτ(1−s)A)ds‖H→H

= ‖A−β

1
∫

0

ikτARk+1(s)eikτ(1−s)A(iτsA)ds‖H→H

≤ kτ2
1
∫

0

‖A−β+2Rk+1(s)‖H→H‖eikτ(1−s)A‖H→Hsds

≤ kτ2
1
∫

0

M1

(
√
k + 1τs)2−β

sds ≤ M1(
√
kτ)β .

Hence the estimate (9) holds for some positive constant M1 depends on β, but
not depends on k and τ .

Theorem 2. Let A be a self-adjoint positive definite operator and A ≥
δI(δ > 0). Then, the Rothe-Maruyama difference scheme (5) for the solution of
problem (1) has a convergence of order 1/2. That is, the convergence estimate

max
0≤k≤N

(

E‖u(tk)− uk‖2H
)1/2 ≤ Mτ1/2 (10)

holds. Here the positive constant M does not depend on τ .
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Proof. By (6), we have the formula

u(tk)− uk = T1k + T2k + T3k, (11)

where

T1k = −i

k
∑

j=1

[ei(k−j)τA −Rk−j]

tj
∫

tj−1

ei(tj−s)Af(s)dws], (12)

T2k = −i

k
∑

j=1

Rk−j[

tj
∫

tj−1

ei(tj−s)Af(s)dws − eiτAf(tj−1)∆wj ], (13)

T3k = −i

k
∑

j=1

Rk−j[eiτA −R]f(tj−1)∆wj . (14)

We estimate these three terms separetely. First, let us obtain an estimate for
T1k. Using the triangle inequality, inequality (9), Ito isometry and estimate (7),
we have

E‖T1k‖2H

≤
k
∑

j=1

‖A−1[ei(k−j)τA −Rk−j]‖2H→H

tj
∫

tj−1

‖Aei(tj−s)Af(s)‖2Hds

≤
k
∑

j=1

M2
2 ((k − j)τ2)

tj
∫

tj−1

‖Af(t)‖2Hds

≤
k
∑

j=1

M2
2Tτ

tj
∫

tj−1

‖Af(t)‖2Hds ≤ M2
2T

2τ

(

max
0≤t≤T

‖Af(t)‖H
)2

.

Hence,

max
0≤k≤N

(

E‖T2k‖2H
)1/2 ≤ M2Tτ

1/2.

Now let us estimate T2k.

E‖T2k‖2H

= E

∥

∥

∥

∥

∥

∥

∥

k
∑

j=1

Rk−j

tj
∫

tj−1

[ei(tj−s)Af(s)dws − eiτAf(tj−1)∆wj ]

∥

∥

∥

∥

∥

∥

∥

2

H



254 A. Sirma

≤
k
∑

j=1

‖Rk−j‖2H→HE

∥

∥

∥

∥

∥

∥

∥

tj
∫

tj−1

(ei(tj−s)Af(s)− eiτAf(tj−1))dws

∥

∥

∥

∥

∥

∥

∥

2

H

≤
k
∑

j=1

E

∥

∥

∥

∥

∥

∥

∥

tj
∫

tj−1

s
∫

tj−1

d

dx
(ei(tj−x)Af(x))dxdws

∥

∥

∥

∥

∥

∥

∥

2

H

≤
k
∑

j=1

E







tj
∫

tj−1

s
∫

tj−1

‖ − iAei(tj−x)Af(x) + ei(tj−x)Af ′(x)‖Hdxdws







2

≤ M2
4

k
∑

j=1

E







tj
∫

tj−1

s
∫

tj−1

dxdws







2

≤ M2
4

k
∑

j=1

tj
∫

tj−1







s
∫

tj−1

dx







2

ds ≤ M2
4

k
∑

j=1

τ3 ≤ M2
4 τ.

Let us estimate T3k. For k 6= j

E‖T3k‖2H = E

∥

∥

∥

∥

∥

∥

−i

k
∑

j=1

Rk−j[eiτA −R]f(tj−1)∆wj

∥

∥

∥

∥

∥

∥

2

≤
k
∑

j=1

‖ARk−j‖2H
∥

∥A−2[eiτA −R]‖2H‖Af(tj−1)
∥

∥

2

H
j

≤
k
∑

j=1

M2
1

jτ2
M2

2 τ
4M2

4 j ≤ M2
1M

2
2M

2
4Tτ.

For k = j, using the Taylor expansion formula for exponential function and R,

easily seen that max
0≤k≤N

(

E‖T3k‖2H
)1/2 ≤ Mτ1/2. Therefore,

max
0≤k≤N

(

E‖T3k‖2H
)1/2 ≤ Mτ1/2.

Hence the result follows from the estimates of T1k, T2k, T3k.
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3. Numerical Results

In this section, the numerical experiments of the initial value problem






















idu(t, x) − uxx(t, x)dt = ieitπ
2

sin(πx)dwt,

0 < t, x < 1, u(0, x) = 0, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ 1,

(15)

for the stochastic Schrödinger equation using Rothe-Maruyama difference scheme
are presented. It is clear that this problem satisfies the assumptions of Theorem
2. The exact solution of this problem is

u (t, x) = eitπ
2

(sinπx)wt.

Here wt =
√
tξ, ξ ∈ N(0, 1). For the approximate solution of problem (15), the

set [0, 1]τ × [0, 1]h of a family of grid points depending on the small parameters
τ and h

[0, 1]τ × [0, 1]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤ N, Nτ = 1,

xn = nh, 0 ≤ n ≤ M,Mh = 1}
is defined. We suggest the following Rothe-Maruyama difference scheme for the
approximate solution of problem (15)































i(ukn − uk−1
n )−

(

ukn+1 − 2ukn + π2ukn−1

)

τ

h2
= f(tk, xn)∆wk,

1 ≤ k ≤ N, 1 ≤ n ≤ M − 1, ∆wk = wk − wk−1,

u0n = 0, 1 ≤ n ≤ M − 1, uk0 = 0, ukM = 0, 0 ≤ k ≤ N.

(16)

So we have (N + 1)× (N + 1) system of linear equations which can be written
in the matrix form as:







AUn+1 +B Un + CUn−1 = Dϕn, 1 ≤ n ≤ M − 1,

U0 = 0, UM = 0,
(17)

where

ϕn =









ϕ0
n

ϕ1
n

...

ϕN
n









(N+1)×1

, ϕk
n =







0, k = 0,

f(tk, xn), 1 ≤ k ≤ N,



256 A. Sirma

A(i, i+1) = a, B(i, i+1) = c, C(i, i+1) = d for any 1 ≤ i ≤ N , B(i, i) = b for
any 1 ≤ i ≤ N + 1, B(N + 1, 1) = 1 and the other entries for the matrices A,
B and C are all zero. The matrix D is an identity matrix of order N + 1 and

Us =
[

U0
s , U

1
s , ..., U

N−1
s , UN

s

]t
, s = n− 1, n, n + 1.

In the above matrices entries are

a = − τ

h2
, b = −i, c = i+

2τ

h2
, d = − τ

h2
.

Thus, we have the first order difference equation with respect to n with matrix
coefficients. To solve this difference equation we have applied the same modified
Gauss elimination method for the difference equation with respect to n with
matrix coefficients as in [7]. For the comparison of the numerical solution of
the difference equation and the analytical solution of the differential equation,
the error terms are computed by the following formulation:

EN
M = max

1≤k≤N

1

Nsim

Nsim
∑

j=1

(

M−1
∑

n=1

[

u(tk, xn)− ukn

]2
h

)1/2

.

The numerical solutions of the problem (15) are recorded for various values of
N and M based on the numerical scheme (16), where u(tk, xn) represents the
exact solution and ukn represents the numerical solution at (tk, xn). The result
are shown in the Table 1 for N = M = 5, 10, 20, 40. In all of these numerical
experiments the number of simulations Nsim is kept constant at 1000. Hence,
each numerical problem has been solved based on 1000 different sample paths
for the process of standard Brownian motion wt.

Table 1. Comparison of the errors for the exact solution of the differential
equation (15) and the numerical solution of the Rothe-Maruyama difference
scheme (16).

N = M = 5 N = M = 10 N = M = 20 N = M = 40

0.37923 0.2557 0.13629 0.06927

From Table 1 it is seen that, using the Monte Carlo simulation, the Rothe-
Maruyama difference (16) converges to the solution of stochastic Schrödinger
equation (15).
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