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Abstract: In this study, the initial value stochastic Schrodinger type problem
in an abstract Hilbert space with the self-adjoint operator is investigated.

Rothe-Maruyama method for the numerical solution of this problem is pre-
sented. Theorem on the convergence of this difference scheme is established. A
numerical example is given.
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1. Introduction

In the literature, stochastic and deterministic type Schrodinger equations have
been extensively studied by many researchers (see [2], [3], [6], [11] and the refer-
ences given therein). Although, in any Hilbert space, numerical approximation
of abstract stochastic Schrodinger equation, using Rothe-Maruyama difference
scheme has not been studied yet. In this article, the initial value problem for
the stochastic Schrodinger equation

idu(t) + Au(t)dt = f(t)dw,, 0 <t <T, u(0) =0 (1)

in a Hilbert space H with a self-adjoint positive definite operator A is con-
sidered. For the approximate solution of (1), first order of accuracy Rothe-
Maruyama difference scheme is constructed. The results are supported by nu-
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merical implementation. Throughout the paper:

(i) wy is a standard Wiener process given on the probability space ({0, F, P).

(i) f(2) is an element of the space M2 ([0,T], Hy) for any z € [0,T], where
H, is a subspace of H.

Here, M2([0,T], H) denote the space of H—valued measurable processes
which satisfy :

(a) ¢(t) is Fy measurable, a.e. in t,
t 2
() E [ Joto) it < .

Strong, mild and weak solutions of stochastic differential equations are stud-
ied by many researchers, as an example see [5], [10]. In the present paper,
following [1] and [4], we study the initial value problem (1) in a Hilbert space.

Our main interest in this study is to construct and investigate the single-
step Rothe-Maruyama difference scheme for the numerical solution problem (1).
On the segment [0, 7] we consider the uniform grid space

0,T), = {ty = kr,k=0,1,.... N,N7 = T} (2)

with step size 7 > 0 and NN is an arbitrary but fixed positive integer.
Note that for the self-adjoint operator A in a Hilbert space H, linear op-

erator "4 is bounded and it is a strongly continuous semigroup (see [8], [9]).
Also,
e g <1 (3)
and
¢
u(t) = =i [ (), @
0

is a unique mild solution of the problem (1) under the assumptions (i) — (7).
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2. Rothe-Maruyama Difference Scheme
First, applying the semigroup property of €'*4 and single step difference scheme
for solution of problem (1) and replacing ™ by R = (I —iTA)~!, we can
construct the corresponding Rothe-Maruyama difference scheme (see [1])
i(up — up—1) + TAu = f(tr—1)Awy, 5)
Awp =w — wg_1,1 <k <N, ug=0

for the numerical solution of problem (1). By induction, we can write
k

Uk = —’L'Z.RkijJrlf(tj,l)ij (6)

Jj=1

for the solution of the Rothe-Maruyama difference scheme (5). Now we show
that Rothe-Maruyama difference scheme (5) for the solution of problem (1) has
a convergence of order 1/2. It is possible under stronger assumption than (i7)
for f(t): case without Wiener process. Assume that

2 /
< .
max |42 (#) | + max [[AF' @)l < My (7)

Moreover, for this we need some related estimates which is stated in the follow-

ing lemma.

Lemma 1. Let A be a self-adjoint positive definite operator, then the
following estimates hold:

M
JARH|| i € ———, 1< k<N, 0<a <1, (8)

(Vkr)e

HA_ﬁ(Rk; —eikTA)HH—>H < Mg(\/ET)B, 1<ESN, 1< 5 <2. (9)

Here the positive constants M, and Ms do not depend on k and 7 but depend
on « and f3, respectively.

Proof. For 0 < o < 1 except the case « = k = 1 using the spectral repre-
sentations of self-adjoint operators we have

[e%
AR o< sup —
| Iz 7foo</5)<oo (1 + 72p2)k/2
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Let g(u
for (p*)* =

) = w Then, g(u) attains its supremum at ¢'(p*) = 0, that is
2 _

Tma? a) . The supremum of g(u) is

)a/?( 1 )k/2: aa/Z (k_a)(k—a)ﬂ
P TR

< ao‘/Q < M1
" (VR T (VR

Now let us consider the case @« = k = 1. Using the spectral representation of
self-adjoint operators, we get

AR gom < sup —H_ <
co<p<oo |1 — ity

3

Hence the estimate (8) holds. Now let R(s) = (I —irsA)~!. Then

|4 (RE(s) — %) |
/ d
=47 [ RO s
0
1

= ||A=# / ikT ARF()e* T A (s A)ds || iy 11

< kT?/||A_ﬂ+2Rk+1(5)HH%HHGMT(I_S)A||HaH5d5

1

My
< kr? _ < ﬂ
<kt /(\/k—HTs)Q_ﬂst < My (VEkr)

Hence the estimate (9) holds for some positive constant M; depends on 3, but
not depends on k£ and 7. ]

Theorem 2. Let A be a self-adjoint positive definite operator and A >
0I(6 > 0). Then, the Rothe-Maruyama difference scheme (5) for the solution of
problem (1) has a convergence of order 1/2. That is, the convergence estimate

Ellu(ty) — uel2)? < M2 10
ma (Bllu(t) — ugl) " < Mr (10

holds. Here the positive constant M does not depend on T.
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Proof. By (6), we have the formula

u(ty) — up = Tig + Top + T3y, (11)
where
k t
Ty = —iy [eF-74 — RF-] / e ti=)A £ (s)dw,], (12)
j=1 £
k b
Ty = —i » R / =4 f(s)dw, — ™AL (t_1) Awy], (13)
j=1 £
k . .
Ty, = —i» R — RIf(t;1)Aw;. (14)
7=1

We estimate these three terms separetely. First, let us obtain an estimate for
T1k. Using the triangle inequality, inequality (9), Ito isometry and estimate (7),
we have

E||Tw| %
k i
< AT Ry [ 1Al
g=1 ti—1

k
< D00k /HAf )I3ds

k t 2
<X MiTr [ 1as@as < m3Tes (max ||Af<>uH) .
=R

Hence,

2\1/2 1/2
< .
SBax (E||Tokll7) ™ < MoTT

Now let us estimate Thy.
2
Bl Tor |5

2
J

t
k
=E|Y _RF7 [ [ f(s)dw, — €T F(tj_1) Awj]

ti—1 H
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k b
<> IR¥|54E / (et Af (s) — e f(tj_1))dwg
j=1 j*l H

t; 2

k S
d e
<§E / / (el f () drduw,

—1t—1 I

2

"
§MZZ / dx dSSMZZT:SSMfT.

Let us estimate T3;. For k # j
2

k
BTy = B~ > R - R)f(t;-1)Aw,
j=1

k
< ST ARMI A2 — RIB AL (-] g
j=1

k
M} 5 4o 27727 12
< Z FMQT M2j < MEMZM3TT.
7j=1
For k = j, using the Taylor expansion formula for exponential function and R,
casily seen that max (E||Ts]1%)"* < M7Y/2. Therefore,

BT 12)Y? < Mrl/2,
Orgr;gang( | T53]1) "~ < M

Hence the result follows from the estimates of 17, 1ok, 13- O
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3. Numerical Results

In this section, the numerical experiments of the initial value problem

idu(t, ) — Ugy(t, 2)dt = ie™™™ sin(mx)dw;,
0<t,z<l, w0,z)=0 0<z<lI, (15)

u(t,0) =u(t,1) =0, 0<t<1,

for the stochastic Schrédinger equation using Rothe-Maruyama difference scheme
are presented. It is clear that this problem satisfies the assumptions of Theorem
2. The exact solution of this problem is
itm? (

u(t,x) = e sin mz) wy.

Here w; = /1€, € € N(0,1). For the approximate solution of problem (15), the
set [0,1]; x [0, 1], of a family of grid points depending on the small parameters
T and h
[0,1]; x [0,1], = {(tk,zn) :tx =kr, 0< k<N, N7=1,
T, = nh, 0<n<M Mh=1}

is defined. We suggest the following Rothe-Maruyama difference scheme for the
approximate solution of problem (15)

(uﬁJrl — 2uﬁ + 7T2uf;'71) T

h2

il — 1) —

= f(tk7 .’L‘n)A'LUk,

1<k<N, 1<n<M-—1, Awy=ws— wy_1, (16)

[ up =0, 1<n<M-1 uf=0, uf; =0 0<k<N.

So we have (N 4+ 1) x (N + 1) system of linear equations which can be written
in the matrix form as:

AU,41+BU,+CU,-1=Dp,, 1<n<M-1,

(17)
Uy=0, Uy =0,
where
0
z? 0, k=0,
Pn = n ’ SOZ =

N
Pn 1 (Ny1)x1
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A(i,i+1) =a, B(i,i+1)=¢, C(i,i+1) =dforany 1 <i < N, B(i,i) = b for
any 1 <i < N+ 1, B(N+1,1) = 1 and the other entries for the matrices A,
B and C are all zero. The matrix D is an identity matrix of order N + 1 and

U, = [U00), ., UNVUN)', s=n—1,nn+1.

In the above matrices entries are

2
_%7[):—2702’5—’——7— d: T

a = h2, —m

Thus, we have the first order difference equation with respect to n with matrix
coefficients. To solve this difference equation we have applied the same modified
Gauss elimination method for the difference equation with respect to n with
matrix coefficients as in [7]. For the comparison of the numerical solution of
the difference equation and the analytical solution of the differential equation,
the error terms are computed by the following formulation:

1 Nsim M—1 2 1/2
N _ k
Ey = IISI}%XN N Z ( Z [u(tk,xn) - un} h) .

j=1 \ n=1

The numerical solutions of the problem (15) are recorded for various values of
N and M based on the numerical scheme (16), where u(ty, z,) represents the
exact solution and u¥ represents the numerical solution at (g, 2,). The result
are shown in the Table 1 for N = M = 5, 10, 20, 40. In all of these numerical
experiments the number of simulations Ng;,, is kept constant at 1000. Hence,
each numerical problem has been solved based on 1000 different sample paths
for the process of standard Brownian motion w;.

Table 1. Comparison of the errors for the exact solution of the differential
equation (15) and the numerical solution of the Rothe-Maruyama difference
scheme (16).

N=M=5 N=M=10 N=M=20 N=M=40
0.37923 0.2557 0.13629 0.06927

From Table 1 it is seen that, using the Monte Carlo simulation, the Rothe-
Maruyama difference (16) converges to the solution of stochastic Schrédinger
equation (15).
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