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Abstract: We study a nonlocal boundary value problem and a space-wise de-
pendent source identification problem for one-dimensional hyperbolic-parabolic
equation with involution and Neumann boundary condition. The stability es-
timates for the solutions of these two problems are established. The first order
of accuracy stable difference schemes are constructed for the approximate so-
lutions of the problems under consideration. Numerical results for two test
problems are provided.

AMS Subject Classification: 65N06, 35M10, 35R30
Key Words: hyperbolic-parabolic equation; involution; nonlocal boundary
value problem; source identification problem; difference scheme; stability

1. Introduction

The theory and applications of local and nonlocal problems for mixed type
partial differential equations have been investigated by many scientists (see,
e.g., [12], [16], [18] and the references given therein). In particular, the theory
of nonlocal boundary value problems for hyperbolic-parabolic equations and
the numerical methods for their approximate solutions have been the subject
of recent research (see, e.g., [3], [4] and the references therein).

Partial differential equations with unknown source terms are used in mathe-
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matical modeling of real-life systems in different fields of science and technology.
In the study of so-called direct problems, the solution of a differential equation
is realized by means of (non)local initial and/or boundary conditions, while
in inverse problems the equation itself is also unknown. The determination of
both the governing equation and its solution requires imposing some conditions
additional to those in the corresponding direct problem. The theory of inverse
source identification problems for partial differential equations has been devel-
oped in great detail over many decades (see, e.g., [14], [15] and the references
therein). In recent years, the first attempts have been made to study the source
identification problems for hyperbolic-parabolic equations and the correspond-
ing difference schemes for their approximate solutions (see [2], [9], [10], [11]).
In this ongoing research, a particular attention is given recently to the source
identification problem for hyperbolic-parabolic equation with involution and
Dirichlet boundary condition (see [1]). Note that partial differential equations
with involution have been recently investigated in the context of direct prob-
lems (see [5], [6], [7], [13]). However, the theory of inverse source identification
problems for partial differential equations with involution has not been well
developed yet.

The present paper is devoted to the study of source identification problems
for hyperbolic-parabolic differential and difference equations with involution
and Neumann boundary condition. The study of inverse source identification
problems is usually based on the reduction of these problems to corresponding
direct problems with nonlocal conditions, and therefore, we consider addition-
ally a nonlocal boundary value problems for hyperbolic-parabolic differential
and difference equations with involution and Neumann boundary condition.
The stability of these problems is established. Numerical results are presented.
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2. Stability of Differential Equations

First, we consider the following nonlocal boundary value problem:

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
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

















































utt(t, x)−
(

a(x)ux(t, x)
)

x
− β

(

a(−x)ux(t,−x)
)

x

+ δu(t, x) = f(t, x), − ℓ < x < ℓ, 0 < t < 1,

ut(t, x)−
(

a(x)ux(t, x)
)

x
− β

(

a(−x)ux(t,−x)
)

x

+ δu(t, x) = g(t, x), − ℓ < x < ℓ, − 1 < t < 0,

ux(t,−ℓ) = ux(t, ℓ) = 0, − 1 ≤ t ≤ 1,

u(0+, x) = u(0−, x), ut(0
+, x) = ut(0

−, x), − ℓ ≤ x ≤ ℓ,

u(−1, x) =
P
∑

j=1
αju(λj , x) + ϕ(x), − ℓ ≤ x ≤ ℓ,

(1)

for one-dimensional hyperbolic-parabolic differential equation with involution
and Neumann boundary condition. Throughout this paper, we assume that the
following conditions hold:

a ≥ a(x) = a(−x) ≥ a > 0, x ∈ (−ℓ, ℓ), a− a|β| ≥ 0, (2)

P
∑

j=1

|αj | ≤ 1, − 1 < λ1 ≤ · · · ≤ λP ≤ 1. (3)

Under compatibility conditions, nonlocal boundary value problem (1) has a
unique smooth solution u(t, x) for the given smooth functions a(x), ϕ(x), f(t, x),
g(t, x) and positive constant δ.

Here and in the rest of this paper, let the Sobolev spaceW 2
2 [−ℓ, ℓ] be defined

as the set of all functions v(x) defined on [−ℓ, ℓ] such that both v(x) and v′′(x)
are locally integrable in L2[−ℓ, ℓ], equipped with the norm

‖v(x)‖W 2
2 [−ℓ,ℓ] =





ℓ
∫

−ℓ

|v(x)|2 dx





1/2

+





ℓ
∫

−ℓ

∣

∣v′′(x)
∣

∣

2
dx





1/2

.

Throughout this paper, we denote by M the positive constants which are
not expected to be evaluated. We write M(δ) to emphasize that the constant
M depends only on δ.

Theorem 1. Suppose that ϕ ∈W 2
2 [−ℓ, ℓ]. Let function f(t, x) be contin-

uously differentiable in t on [0, 1] × [−ℓ, ℓ] and function g(t, x) be continuously
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differentiable in t on [−1, 0]× [−ℓ, ℓ]. Then, the solution of the nonlocal bound-
ary value problem (1) satisfies the following stability estimates

‖u‖C([−1,1],L2[−ℓ,ℓ])

≤M1(δ)
[

‖ϕ‖L2[−ℓ,ℓ] + ‖f‖C([0,1],L2[−ℓ,ℓ]) + ‖g‖C([−1,0],L2[−ℓ,ℓ])

]

,

‖u‖C(2)([0,1],L2[−ℓ,ℓ]) + ‖u‖C(1)([−1,0],L2[−ℓ,ℓ]) + ‖u‖C([−1,1],W 2
2 [−ℓ,ℓ])

≤M2(δ)
[

‖ϕ‖W 2
2 [−ℓ,ℓ] + ‖f‖C(1)([0,1],L2[−ℓ,ℓ]) + ‖g‖C(1)([−1,0],L2[−ℓ,ℓ])

]

.

Proof. Problem (1) can be written as the abstract nonlocal boundary value
problem



































u′′(t) +Au(t) = f(t), 0 < t < 1,

u′(t) +Au(t) = g(t), − 1 < t < 0,

u(0+) = u(0−), u′(0+) = u′(0−),

u(−1) =
P
∑

j=1
αju(λj) + ϕ

(4)

in a Hilbert space L2[−ℓ, ℓ] with self-adjoint positive definite operator A = Ax

defined by the formula

Axu(x) = −
(

a(x)ux(x)
)

x
− β

(

a(−x)ux(−x)
)

x
+ δu(x) (5)

with the domain D(Ax) =
{

u ∈W 2
2 [−ℓ, ℓ]

∣

∣

∣
u′(−ℓ) = u′(ℓ) = 0

}

. Here, f(t) =

f(t, x) and g(t) = g(t, x) are given abstract functions, u(t) = u(t, x) is unknown
function. The proof of Theorem 1 is based on the theorem on stability of nonlo-
cal abstract problem (4) (see [3]), the self-adjointness and positive definiteness
of the space operator Ax defined by formula (5) (see [6]).

Second, we consider the following space-wise dependent source identification
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problem

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
























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



























utt(t, x)−
(

a(x)ux(t, x)
)

x
− β

(

a(−x)ux(t,−x)
)

x

+ δu(t, x) = p(x) + f(t, x), − ℓ < x < ℓ, 0 < t < 1,

ut(t, x)−
(

a(x)ux(t, x)
)

x
− β

(

a(−x)ux(t,−x)
)

x

+ δu(t, x) = p(x) + g(t, x), − ℓ < x < ℓ,−1 < t < 0,

u(0+, x) = u(0−, x), ut(0
+, x) = ut(0

−, x), − ℓ ≤ x ≤ ℓ,

ux(t,−ℓ) = ux(t, ℓ) = 0, − 1 ≤ t ≤ 1,

u(−1, x) = ϕ(x), u(1, x) = ψ(x), − ℓ ≤ x ≤ ℓ

(6)

for one-dimensional hyperbolic-parabolic differential equation with involution
and Neumann boundary condition. Under assumption (2) and compatibility
conditions, problem (6) has a unique smooth solution

(

u(t, x), p(x)
)

for the
given smooth functions a(x), ϕ(x), ψ(x), f(t, x), g(t, x) and constant δ > 0.

Theorem 2. Suppose that ϕ,ψ ∈ W 2
2 [−ℓ, ℓ]. Let function f(t, x) be con-

tinuously differentiable in t on [0, 1]×[−ℓ, ℓ] and function g(t, x) be continuously
differentiable in t on [−1, 0] × [−ℓ, ℓ]. Then, the solution of the identification
problem (6) satisfies the stability estimates

‖u‖C([−1,1],L2[−ℓ,ℓ]) +
∥

∥(Ax)−1p
∥

∥

L2[−ℓ,ℓ]
≤M3(δ)

[

‖ϕ‖L2[−ℓ,ℓ]

+ ‖ψ‖L2[−ℓ,ℓ] + ‖f‖C([0,1],L2[−ℓ,ℓ]) + ‖g‖C([−1,0],L2[−ℓ,ℓ])

]

,

‖u‖C(2)([0,1],L2[−ℓ,ℓ]) + ‖u‖C(1)([−1,0],L2[−ℓ,ℓ]) + ‖u‖C([−1,1],W 2
2 [−ℓ,ℓ])

+ ‖p‖L2[−ℓ,ℓ] ≤M4(δ)
[

‖ϕ‖W 2
2 [−ℓ,ℓ] + ‖ψ‖W 2

2 [−ℓ,ℓ]

+ ‖f‖C(1)([0,1],L2[−ℓ,ℓ]) + ‖g‖C(1)([−1,0],L2[−ℓ,ℓ])

]

.

Proof. Problem (6) can be written in the following abstract form






















u′′(t) +Au(t) = p+ f(t), 0 < t < 1,

u′(t) +Au(t) = p+ g(t), − 1 < t < 0,

u(0+) = u(0−), u′(0+) = u′(0−),

u(−1) = ϕ, u(1) = ψ

(7)

in a Hilbert space L2[−ℓ, ℓ] with the space operator A = Ax defined by the
formula (5). Here, f(t) = f(t, x) and g(t) = g(t, x) are given abstract functions,
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u(t) = u(t, x) is unknown function and p = p(x) is the unknown element of
L2[−ℓ, ℓ]. The proof of Theorem 2 is based on the theorem on stability of the
identification problem (7) (see [2]), the self-adjointness and positive definiteness
of the space operator Ax defined by formula (5) (see [6]).

3. Stability of Difference Schemes

The development and implementation of stable numerical methods for solv-
ing the problems at hand are crucial for practical reasons since the analytical
solutions are not available most of the time.

In this section, we construct and analyse the first order of accuracy stable
difference schemes for the approximate solutions of the nonlocal boundary value
problem (1) and the space-wise dependent source identification problem (6).
The discretization of these problems is carried out in two steps. In the first
step, the spatial discretization is conducted. We define the grid space

[−ℓ, ℓ]h =
{

x = xn
∣

∣ xn = nh, −M ≤ n ≤M, Mh = ℓ
}

.

We introduce the Hilbert space L2h = L2([−ℓ, ℓ]h) of the grid functions ϕh(x) =
{ϕn}M−M defined on [−ℓ, ℓ]h, equipped with the norm

∥

∥

∥ϕh
∥

∥

∥

L2h

=





∑

x∈[−ℓ,ℓ]h

∣

∣

∣ϕh(x)
∣

∣

∣

2
h





1/2

.

To the differential operator Ax defined by the formula (5), we assign the differ-
ence operator Ax

h by the formula

Ax
hϕ

h(x) =
{

−
(

a(x)ϕn
x

)

x
− β

(

a(−x)ϕ−n
x

)

x
+ δϕn

}M−1

−M+1
, (8)

acting in the space of grid functions ϕh(x) = {ϕn}M−M and satisfying the con-
ditions ϕ−M = ϕ−M+1, ϕM = ϕM−1. Here

ϕn
x̄ =

ϕn − ϕn−1

h
, −M + 1 ≤ n ≤M,

ϕn
x =

ϕn+1 − ϕn

h
, −M ≤ n ≤M − 1.

It is known that under the assumption (2) the difference operator Ax
h, defined

by (8), is a self-adjoint positive definite operator in L2h. Using Ax
h, the first
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discretization step for problems (1) and (6) results in the nonlocal boundary
value problem



































uhtt(t, x) +Ax
hu

h(t, x) = fh(t, x), 0 < t < 1,

uht (t, x) +Ax
hu

h(t, x) = gh(t, x), − 1 < t < 0,

uh(0+, x) = uh(0−, x), uht (0
+, x) = uht (0

−, x),

uh(−1, x) =
P
∑

j=1
αju

h(λj , x) + ϕh(x)

(9)

and the identification problem



























uhtt(t, x) +Ax
hu

h(t, x) = ph(x) + fh(t, x), 0 < t < 1,

uht (t, x) +Ax
hu

h(t, x) = ph(x) + gh(t, x), − 1 < t < 0,

uh(0+, x) = uh(0−, x), uht (0
+, x) = uht (0

−, x),

uh(−1, x) = ϕh(x), uh(1, x) = ψh(x),

(10)

respectively. Here and in the rest of this section, x ∈ [−ℓ, ℓ]h.

Let τ = 1
N and tk = kτ , −N ≤ k ≤ N . In the second discretization step,

we replace the problems (9) and (10) with the following first order of accuracy
difference schemes































































uh
k+1(x)−2uh

k
(x)+uh

k−1(x)

τ2
+Ahu

h
k+1(x) = fhk (x),

fhk (x) = fh(tk, x), 1 ≤ k ≤ N − 1,

uh
k
(x)−uh

k−1(x)

τ +Ahu
h
k(x) = ghk (x),

ghk (x) = gh(tk, x),−N + 1 ≤ k ≤ 0,

uh1(x)− uh0(x) = uh0(x)− uh−1(x),

uh−N (x) =
P
∑

j=1
αju

h
[

λj

τ

](x) + ϕh(x),

(11)
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

























































uh
k+1(x)−2uh

k
(x)+uh

k−1(x)

τ2
+Ax

hu
h
k+1(x) = ph(x) + fhk (x),

fhk (x) = fh(tk, x), 1 ≤ k ≤ N − 1,

uh
k
(x)−uh

k−1(x)

τ +Ax
hu

h
k(x) = ph(x) + ghk (x),

ghk (x) = gh(tk, x), −N + 1 ≤ k ≤ 0,

uh1(x)− uh0(x) = uh0(x)− uh−1(x),

uh−N (x) = ϕh(x), uhN (x) = ψh(x),

(12)

respectively.

Theorem 3. Let τ and h be sufficiently small numbers. For the solution
{

uhk(x)
}N

−N
of difference problem (11) the following stability estimates hold

max
−N≤k≤N

‖uk‖L2h

≤M5(δ)
[

∥

∥ϕh
∥

∥

L2h
+ max

−N+1≤k≤0

∥

∥ghk
∥

∥

L2h
+ max

1≤k≤N−1

∥

∥fhk
∥

∥

L2h

]

,

max
1≤k≤N−1

∥

∥

∥

∥

uh
k+1−2uh

k
+uh

k−1

τ2

∥

∥

∥

∥

L2h

+ max
−N+1≤k≤0

∥

∥

∥

∥

uh
k
−uh

k−1

τ

∥

∥

∥

∥

L2h

+ max
−N≤k≤N

∥

∥uhk
∥

∥

W 2
2h

≤M6(δ)
[

∥

∥ϕh
∥

∥

W 2
2h

+
∥

∥gh0
∥

∥

L2h

+ max
−N+2≤k≤0

∥

∥

∥

∥

gh
k
−gh

k−1

τ

∥

∥

∥

∥

L2h

+
∥

∥fh1
∥

∥

L2h
+ max

2≤k≤N−1

∥

∥

∥

∥

fh
k
−fh

k−1

τ

∥

∥

∥

∥

L2h

]

.

Proof. Difference scheme (11) can be written as the following abstract dif-
ference scheme



























uh
k+1−2uh

k
+uh

k−1

τ2
+Ahu

h
k+1 = fhk , 1 ≤ k ≤ N − 1,

uh
k
−uh

k−1

τ +Ahu
h
k = ghk , −N + 1 ≤ k ≤ 0,

uh1 − uh0 = uh0 − uh−1, u
h
−N =

P
∑

j=1
αju

h
[

λj

τ

] + ϕh

(13)

in a Hilbert space L2h with operator Ah = Ax
h defined by formula (8). Here,

fhk = fhk (x) and g
h
k = ghk (x) are given abstract functions, uhk = uhk(x) is unknown

mesh function. The proof of Theorem 3 is based on the stability of the difference
scheme (13) (see [4]), the self-adjointness and positive definiteness of the space
operator Ah in L2h (see [8]).
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Theorem 4. Let τ and h be sufficiently small numbers. For the solution
{

{

uhk(x)
}N

−N
, ph(x)

}

of problem (12) the following stability estimates hold

max
−N≤k≤N

‖uk‖L2h
+

∥

∥(Ax
h)

−1ph
∥

∥

L2h
≤M7(δ)

[

∥

∥ϕh
∥

∥

L2h
+

∥

∥ψh
∥

∥

L2h

+ max
−N+1≤k≤0

∥

∥ghk
∥

∥

L2h
+ max

1≤k≤N−1

∥

∥fhk
∥

∥

L2h

]

,

max
1≤k≤N−1

∥

∥

∥

∥

uh
k+1−2uh

k
+uh

k−1

τ2

∥

∥

∥

∥

L2h

+ max
−N+1≤k≤0

∥

∥

∥

∥

uh
k
−uh

k−1

τ

∥

∥

∥

∥

L2h

+
∥

∥ph
∥

∥

L2h

+ max
−N≤k≤N

∥

∥uhk
∥

∥

W 2
2h

≤M8(δ)
[

∥

∥ϕh
∥

∥

W 2
2h

+
∥

∥ψh
∥

∥

W 2
2h

+
∥

∥gh0
∥

∥

L2h

+ max
−N+2≤k≤0

∥

∥

∥

∥

gh
k
−gh

k−1

τ

∥

∥

∥

∥

L2h

+
∥

∥fh1
∥

∥

L2h
+ max

2≤k≤N−1

∥

∥

∥

∥

fh
k
−fh

k−1

τ

∥

∥

∥

∥

L2h

]

.

Proof. Difference scheme (12) can be written in the following abstract form



















uh
k+1−2uh

k
+uh

k−1

τ2 +Ahu
h
k+1 = ph + fhk , 1 ≤ k ≤ N − 1,

uh
k
−uh

k−1

τ +Ahu
h
k = ph + ghk , −N + 1 ≤ k ≤ 0,

uh1 − uh0 = uh0 − uh−1, u
h
−N = ϕh, uhN = ψh

(14)

in a Hilbert space L2h with operator Ah = Ax
h defined by formula (8). Here,

fhk = fhk (x) and g
h
k = ghk (x) are given abstract functions, uhk = uhk(x) is unknown

mesh function and ph = ph(x) is the unknown mesh element of L2h. The proof
of Theorem 4 is based on the stability of the difference scheme (14) (see [11]),
the self-adjointness and positive definiteness of the space operator Ah in L2h

(see [8]).

4. Numerical Examples

In this section, we illustrate how the constructed first order of accuracy differ-
ence schemes can be applied for two test problems. The numerical algorithms
for implementing these difference schemes are described in [1] and based on a
procedure of modified Gauss elimination method [17]. Through the error anal-
ysis, we show the convergence of the first order of accuracy difference schemes.
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First, we consider the following nonlocal problem































































utt(t, x)− uxx(t, x) − 0.5
(

ux(t,−x)
)

x
+ u(t, x)

= f(t, x), x ∈ (−π, π), t ∈ (0, 1),

ut(t, x)− uxx(t, x)− 0.5
(

ux(t,−x)
)

x
+ u(t, x)

= g(t, x), x ∈ (−π, π), t ∈ (−1, 0),

u(0+, x) = u(0−, x), ut(0
+, x) = ut(0

−, x), x ∈ [−π, π],

u(−1, x) = u(1, x), x ∈ [−π, π],

ux(t,−π) = ux(t, π) = 0, t ∈ [−1, 1]

(15)

for one-dimensional hyperbolic-parabolic equation with involution and Neu-
mann boundary condition, where

f(t, x) = 1.5 cos t cos x, x ∈ (−π, π), t ∈ (0, 1),

g(t, x) = (2.5 cos t− sin t) cos x, x ∈ (−π, π), t ∈ (−1, 0).

The exact solution of problem (15) is given by

u(t, x) = cos t cos x, − π ≤ x ≤ π, − 1 ≤ t ≤ 1.

Let τ = 1
N and h = π

M . We define the set of grid points as following

{

(tk, xn)
∣

∣ tk = kτ, −N ≤ k ≤ N, xn = nh, −M ≤ n ≤M
}

.

For the numerical solution of problem (15), we construct the first order of
accuracy difference scheme in t























































uk+1
n −2uk

n+uk−1
n

τ2
−

uk+1
n+1−2uk+1

n +uk+1
n−1

h2 −
uk+1
−n+1−2uk+1

−n +uk+1
−n−1

2h2 + uk+1
n

= f(tk, xn), 1 ≤ k ≤ N − 1,−M + 1 ≤ n ≤M − 1,

uk
n−uk−1

n

τ −
uk
n+1−2uk

n+uk
n−1

h2 −
uk
−n+1−2uk

−n+uk
−n−1

2h2 + ukn

= g(tk, xn),−N + 1 ≤ k ≤ 0, −M + 1 ≤ n ≤M − 1,

u1n − u0n = u0n − u−1
n , u−N

n = uNn , −M ≤ n ≤M,

uk−M = uk−M+1, u
k
M = ukM−1, −N ≤ k ≤ N.

The numerical solutions of this difference scheme are computed for different
values of M and N . We measure the error between the exact and numerical
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solutions by

‖Eu‖∞ = max
−N≤k≤N

−M≤n≤M

∣

∣

∣
u(tk, xn)− ukn

∣

∣

∣
,

where u(tk, xn) is the exact value of u(t, x) at (tk, xn) and ukn represents the
corresponding numerical solution. Table 1 shows the errors between the exact
solution of the problem (15) and the numerical solutions of the first order of
accuracy difference scheme.

Table 1: The errors of the numerical solutions of the first order of
accuracy difference scheme for the problem (15).

‖Eu‖∞ Order

N =M = 20 1.020 × 10−1 -

N =M = 40 4.975 × 10−2 1.036

N =M = 80 2.457 × 10−2 1.018

N =M = 160 1.221 × 10−2 1.009

N =M = 320 6.084 × 10−3 1.005

Second, we consider the following source identification problem






























































utt(t, x)− uxx(t, x) − 0.5
(

ux(t,−x)
)

x
+ u(t, x)

= p(x) + f(t, x), x ∈ (−π, π), t ∈ (0, 1),

ut(t, x)− uxx(t, x)− 0.5
(

ux(t,−x)
)

x
+ u(t, x)

= p(x) + g(t, x), x ∈ (−π, π), t ∈ (−1, 0),

u(0+, x) = u(0−, x), ut(0
+, x) = ut(0

−, x), x ∈ [−π, π],

u(−1, x) = ϕ(x), u(1, x) = ψ(x), x ∈ [−π, π],

ux(t,−π) = ux(t, π) = 0, t ∈ [−1, 1]

(16)

for one-dimensional hyperbolic-parabolic equation with involution and Neu-
mann boundary condition, where

f(t, x) = (1.5 cos t− 1) cos x, x ∈ (−π, π), t ∈ (0, 1),

g(t, x) = (2.5 cos t− sin t− 1) cos x, x ∈ (−π, π), t ∈ (−1, 0),

ϕ(x) = cos 1 cos x, ψ(x) = cos 1 cos x, x ∈ [−π, π].
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The exact solution of problem (16) is the pair of functions

(

u(t, x), p(x)
)

=
(

cos t cos x, cos x
)

, − π ≤ x ≤ π, − 1 ≤ t ≤ 1.

For the numerical solution of source identification problem (16), we construct
the first order of accuracy difference scheme in t























































uk+1
n −2uk

n+uk−1
n

τ2
−

uk+1
n+1−2uk+1

n +uk+1
n−1

h2 −
uk+1
−n+1−2uk+1

−n +uk+1
−n−1

2h2 + uk+1
n

= pn + f(tk, xn), 1 ≤ k ≤ N − 1,−M + 1 ≤ n ≤M − 1,

uk
n−uk−1

n

τ −
uk
n+1−2uk

n+uk
n−1

h2 −
uk
−n+1−2uk

−n+uk
−n−1

2h2 + ukn

= pn + g(tk, xn),−N + 1 ≤ k ≤ 0,−M + 1 ≤ n ≤M − 1,

u1n − u0n = u0n − u−1
n , u−N

n = ϕ(xn), u
N
n = ψ(xn),−M ≤ n ≤M,

uk−M = uk−M+1, u
k
M = ukM−1,−N ≤ k ≤ N,

where ukn and pn denote the numerical approximations of u(t, x) at (t, x) =
(tk, xn) and p(x) at x = xn, respectively. The numerical solutions of this
difference scheme are computed for different values of M and N . Table 2 shows
the errors between the exact solution of the problem (16) and the numerical
solutions of the first order of accuracy scheme. We observe that the scheme has
the first order convergence as it is expected to be.

Table 2: The errors of the numerical solutions of the first order of
accuracy difference scheme for the problem (16).

‖Ep‖∞ Order ‖Eu‖∞ Order

N =M = 20 9.787 × 10−2 - 5.229 × 10−2 -

N =M = 40 4.927 × 10−2 0.990 2.591 × 10−2 1.013

N =M = 80 2.472 × 10−2 0.995 1.289 × 10−2 1.007

N =M = 160 1.238 × 10−2 0.997 6.428 × 10−3 1.004

N =M = 320 6.198 × 10−3 0.999 3.210 × 10−3 1.002
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