ELLIPTIC EQUATIONS IN DOMAINS
WITH CUTS: CERTAIN EXAMPLES

Abstract

We consider some special examples of boundary value problems for a model elliptic pseudo-differential equation in a special cone in 3-dimensional space. Using a concept of wave factorization for an elliptic symbol and the formula for a general solution for the equation we study limit behavior of the solution when some parameters of the cone tend to their limit values.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 2
Year: 2021

DOI: 10.12732/ijam.v34i2.10

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S. Bochner, W.T. Martin, Several Complex Variables, Princeton University Press, Princeton (1948).
  2. [2] V.S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, Dover Publications, Mineola, NY (1966).
  3. [3] G. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Amer. Math. Soc., Providence, RI (1981).
  4. [4] F.D. Gakhov, Boundary Value Problems, Dover Publications, Mineola, NY (1981).
  5. [5] L. H¨ormander, The Analysis of Linear Partial Differential Operators III,IV, Springer, Berlin-Heidelberg (1985).
  6. [6] S.G. Milkhin, S. Pr¨oßdorf, Singular Integral Operators, Akademie-Verlag, Berlin (1986).
  7. [7] N.I. Muskhelishvili, Singular Integral Equations, North Holland, Amsterdam (1976).
  8. [8] V.B. Vasil’ev, Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary Value Problems in NonSmooth Domains, Kluwer Academic Publishers, Dordrecht-Boston-London (2000).
  9. [9] S.A. Nazarov, B.A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin-New York (1994).
  10. [10] L. Rodino, B.-W. Schulze, M.W. Wong (Eds.), Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Institute Communications, Amer. Math. Soc., Providence (2007).
  11. [11] L. Rodino, M.W. Wong (Eds.), Pseudo-Differential Operators: Quantization and Signals, Lect. Notes Math. 1949 (2008).
  12. [12] Ju.V. Egorov, B.-W. Schulze, Pseudo-Differential Operators, Singularities, Applications, Birkh¨auser-Verlag, Basel (1997).
  13. [13] B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators, Wiley, Chichester (1998).
  14. [14] V.B. Vasilyev, Pseudo-differential equations and conical potentials: 2dimensional case, Opusc. Math., 39 (2019), 109-124.
  15. [15] V.B. Vasilyev, Pseudo-differential equations, wave factorization, and related problems, Math. Methods Appl. Sci., 41 (2018), 9252-9263.
  16. [16] V.B. Vasilyev, On certain 3D limit boundary value problem. Lobachevskii J. Math., 41 (2020), 913-921.