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Abstract: A linear boundary value problem for a system of integro-differential
equations with involution is studied by the parameterization method. Sufficient
conditions for the existence of a unique solution to the problem are established
in terms of coefficients. An algorithm for finding the solution to the problem
under consideration is proposed.
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1. Introduction

On the interval [0, T ] we consider the following two-point boundary value prob-
lem for the system of integro-differential equations with involution:

dx(t)
dt

+ diag (a1, a2, . . . , an)
dx(α(t))

dt
=

T∫
0

K(t, s)x(s)ds+ f(t),

t ∈ [0, T ],

(1)

Bx(0) + Cx(T ) = d, d ∈ Rn, (2)

whereK(t, s) is a continuous on [0, T ]×[0, T ] matrix and f(t) is an n-dimensional
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vector-function continuous on [0, T ].

Here α(t) is a changing orientation homeomorphism
α(t) : [0, T ] → [0, T ] such that α2(t) = α (α(t)) = t. Such a homeomorphism is
called a Carleman shift or deviation of involution. Its properties were studied
by G. Litvinchuk [1], N. Karapetyants and S. Samko [2] and other (see [3], [4],
[5], [6], [7], [8], [9], [10]). As an example of a deviation with involution on [0, T ]
we can take the homeomorphism α(t) = T − t.

The study of integro-differential equations has been considered in many
works (see [11], [12], [13]).

By a solution to problem (1),(2) we mean a vector-function x(t) that is con-
tinuous on [0, T ] and continuously differentiable on (0, T ), satisfies the system
of integro-differential equations with involution (1) and the boundary condition
(2).

In the present paper, problem (1),(2) is studied by the parameterization
method [14]. On the basis of this method, we establish necessary and sufficient
conditions for the unique solvability of the problem in question and propose an
algorithm for finding its solution.

Let us consider equation (1) for t = α(t):

dx(α(t))
dt

+ diag (a1, a2, . . . , an)
dx(t)
dt

=
T∫
0

K (α(t), s) x(s)ds + f (α(t)) , t ∈ [0, T ].

From the system

dx(t)
dt

+ diag (a1, a2, . . . , an)
dx(α(t))

dt

=
T∫
0

K(t, s)x(s)ds+ f(t), t ∈ [0, T ],

dx(α(t)
dt

+ diag(a1, a2, . . . , an)
dx(t)
dt

=
T∫
0

K(α(t), s)x(s)ds + f(α(t)), t ∈ [0, T ],

we obtain

diag
(
1− a21, 1− a22, . . . , 1− a2n

) dx(t)
dt

=
T∫
0

[K(t, s)− diag(a1, a2, . . . , an)K(α(t), s)] x(s)ds

+ [f(t)− diag(a1, a2, . . . , an)f(α(t))] .
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Under assumption that the matrix diag(1− a21, 1− a22, . . . , 1− a2n) is invertible,
we can rewrite problem (1),(2) in the form

dx(t)

dt
=

T∫

0

K1(t, s)x(s)ds + f1(t), t ∈ [0, T ], (3)

Bx(0) + Cx(T ) = d, (4)

where
K1(t, s) = diag(1/(1 − a21), 1/(1 − a22), . . . , 1/(1 − a2n))
×[K(t, s)− diag(a1, a2, . . . , an)K(α(t), s)]

and
f1(t) = diag(1/(1 − a21), 1/(1 − a22), . . . , 1/(1 − a2n))
×[f(t)− diag(a1, a2, . . . , an)f(α(t))].

2. Method of Investigation

Let us divide [0, T ] into N equal parts with a step size h:

[0, T ) =
N⋃
r=1

[(r − 1)h, rh). We denote by xr(t) the restriction of the function

x(t) to the r-th subinterval, i.e., xr(t) = x(t) for
t ∈ [(r − 1)h, rh). The original problem is then transformed to an equivalent
multipoint boundary value problem

dxr(t)
dt

=
N∑
j=1

jh∫

(j−1)h

K1(t, s)xj(s)ds+ f1(t),

t ∈ [(r − 1)h, rh), r = 1, N,

(5)

Bx1(0) +C lim
t→T−0

xN (t) = d, (6)

lim
t→sh−0

xs(t) = xs+1(sh), s = 1, N − 1. (7)

Here (7) are conditions for the continuity of x(t) at the interior partition
points t = sh, s = 1, N − 1.

If x(t) is a solution to problem (3),(4), then the system of its restrictions
x[t] = (x1(t), x2(t), . . . , xN (t))′ is a solution to multipoint problem (5)-(7). And
vice versa, if a system of vector-functions x̃[t] = (x̃1(t), x̃2(t), . . . , x̃N (t))′ is a
solution to problem (5)-(7), then the function x̃(t) defined by the equations
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x̃(t) = x̃r(t), t ∈ [(r− 1)h, rh), r = 1, N , and x̃(T ) = lim
t→T−0

x̃N (t), is a solution

to original problem (3),(4).

Let us now introduce parameters λr, r = 1, N , that are equal to the values
of the functions xr(t) at the points t = (r−1)h. Now, on each subinterval [(r−
1)h, rh), r = 1, N , we make the substitution xr(t) = ur(t) + λr. The problem
(5)-(7) is then reduced to an equivalent multipoint problem with parameters:

dur(t)

dt
=

N∑

j=1

jh∫

(j−1)h

K1(t, s)[uj(s) + λj ]ds+ f1(t), (8)

ur[(r − 1)h] = 0, t ∈ [(r − 1)h, rh), r = 1, N, (9)

Bλ1 +CλN + C lim
t→T−0

uN (t) = d, (10)

λs + lim
t→sh−0

us(t) = λs+1, s = 1, N − 1. (11)

Problems (5)-(7) and (8)-(11) are equivalent in the following sense. If a
system of functions x[t] = (x1(t), x2(t), . . . , xN (t))′ is a solution to problem
(5)-(7), then the pair (λ, u[t]) with

λ = (x1(0), x2(h), . . . , xN [(N − 1)h])′

and

u[t] = (x1(t)− x1(0), x2(t)− x2(h), . . . , xN (t)− xN [(N − 1)h])′

is a solution to problem (8)-(11). Vice versa, if a pair (λ̃, ũ[t]) is a solution to
(8)-(11), then the system of functions

x̃(t) = (λ̃1 + ũ1(t), λ̃2 + ũ2(t), . . . , λ̃N + ũN (t))′

is a solution to problem (5)-(7).

The presence of initial conditions (9) allows us, for fixed λr, to determine
ur(t), r = 1, N , from the system of integral equations

ur(t) =
t∫

(r−1)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)[uj(s) + λj ]dsdτ

+
t∫

(r−1)h

f1(τ)dτ, t ∈ [(r − 1)h, rh).

(12)
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By substituting the expressions for lim
t→T−0

uN (t) and lim
t→sh−0

us(t), s = 1, N ,

obtained from (12), into conditions (10),(11), and multiplying both sides of
(10) by h > 0, we get the system of linear algebraic equations in unknown
parameters λr, r = 1, N :

hBλ1 + hCλN + hC
Nh∫

(N−1)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)λjdsdτ

= hd− hC
Nh∫

(N−1)h

f1(τ)dτ

−hC
Nh∫

(N−1)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)uj(s)dsdτ,

(13)

λs +
sh∫

(s−1)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)λjdsdτ − λs+1

= −
sh∫

(s−1)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)uj(s)dsdτ

−
sh∫

(s−1)h

f1(τ)dτ, s = 1, N − 1.

(14)

Let us denote by Q(h) the (nN × nN)-matrix corresponding to the left-hand
side of system (13),(14). This system thus can be represented in the form

Qh(λ) = −F (h)−G(u, h), λ ∈ RnN , (15)

where

F (h) =
(
− hd+ hC

Nh∫

(N−1)h

f1(τ)dτ,
h∫
0

f1(τ)dτ, . . . ,
(N−1)h∫

(N−2)h

f1(τ)dτ
)′

,

G(u, h) =
(
hC

Nh∫

(N−1)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)uj(s)dsdτ,

h∫
0

N∑
j=1

jh∫

(j−1)h

K1(τ, s)uj(s)dsdτ,

. . . ,
(N−1)h∫

(N−2)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)uj(s)dsdτ
)′

.

Thus, to find a solution to problem (8)-(11), for the pair (λ, u[t]), we have the
system of equations (12), (15). We will find this solution as the limit of the
sequence of pairs (λ(k), u(k)[t]) according to the following algorithm.
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Step 0. (a) Assuming that the matrix Q(h) is invertible, from the equation
Qh(λ) = −F (h) we find the initial approximation to the parameter λ(0) =

(λ
(0)
1 , λ

(0)
2 , . . . , λ

(0)
N )′nN :

λ(0) = −[Q(h)]−1F (h).

(b) Substituting λ
(0)
r , r = 1, N , into the right-hand side of the

system of integro-differential equations (8) and solving special Cauchy prob-
lems with initial conditions (9), we obtain

u(0)[t] = (u
(0)
1 (t), u

(0)
2 (t), . . . , u

(0)
N (t))′.

Step 1. (a) Substituting u
(0)
r (t), r = 1, N , into the right-hand side of

(15), from the equation Qh(λ) = −F (h) − G(u(0), h) we determine λ(1) =

(λ
(1)
1 , λ

(1)
2 , . . . , λ

(1)
N )′.

(b) Substituting λ
(1)
r , r = 1, N , into the right-hand side of (8) and solving

special Cauchy problems (8),(9), we obtain

u(1)[t] = (u
(1)
1 (t), u

(1)
2 (t), . . . , u

(1)
N (t))′,

and so forth. Proceeding by the algorithm, in the k-th step we find the pair
(λ(k), u(k)[t]), k = 0, 1, 2, . . .. We introduce spaces C([0, T ], h, RnN ) of systems
of functions

x[t] = (x1(t), x2(t), . . . , xN (t))′,

where the functions xr(t) are continuous on [(r − 1)h, rh) and have a
finite left-side limit lim

t→rh−0
ur(t), r = 1, N , with norm

‖x[·]‖2 = max
r=1,N

sup
t∈[(r−1)h,rh)

(x1(t), x2(t), . . . , xN (t))′.

As we said, the unknown functions u[t] = (u1(t), u2(t), . . . , uN (t))′ are de-
termined by solving special Cauchy problems (8),(9) for systems of integro-
differential equations. But, unlike the Cauchy problems for ordinary differen-
tial equations, special Cauchy problems for integro-differential equations are
not always solvable.

3. Results of Investigation

The following theorem provides a sufficient condition for the unique solvability
of the special Cauchy problem (8),(9) for fixed values of parameters.
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Theorem 1. Let the step size of the partition h = T/N satisfy the
inequality

δ(h) = βTh < 1, (16)

where β = max
(t,s)∈[0,T ]×[0,T ]

‖K1(t, s)‖.

Then the special Cauchy problem (8),(9) has a unique solution.

Proof. As is known, the Cauchy problem (8),(9) is equivalent to a system
of integral equations

ur(t) =
t∫

(r−1)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)uj(s)dsdτ

+
t∫

(r−1)h

F̃ (τ)dτ, t ∈ [(r − 1)h, rh), r = 1, N,

(17)

where F̃ (τ) =
N∑
j=1

jh∫

(j−1)h

K1(τ, s)dsdτ · λj + f1(τ).

We find the solution of integral equations (16) by the method of succes-
sive approximations. As a zero approximation we take the family of functions

ur(t) = 0, t ∈ [(r− 1)h, rh), r = 1, N and u(k)[t] = (u
(k)
1 (t), u

(k)
2 (t), . . . , u

(k)
N (t))′

from the systems of integral equations

u
(k)
r (t) =

t∫

(r−1)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)u
(k−1)
j (s)dsdτ

+
t∫

(r−1)h

F̃ (τ)dτ, t ∈ [(r − 1)h, rh), r = 1, N.

Denote by ∆
(k)
r (t) the difference of u(k)(t)− u(k−1)(t), then

∆u
(k)
r (t) =

t∫

(r−1)h

N∑
j=1

jh∫

(j−1)h

K1(τ, s)∆u
(k−1)
j (s)dsdτ,

t ∈ [(r − 1)h, rh), r = 1, N, k = 1, 2, ... .

As

sup
t∈[(r−1)h,rh)

‖∆u(k)r (t)‖ = βTh max
j=1,N

sup
t∈[(j−1)h,jh)

‖∆u
(k−1)
j (t)‖,

hence

‖∆u(k)[·]‖2 = βTh‖∆u(k−1)[·]‖2, k = 1, 2, ... . (18)
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It follows from (18) and (16) that the system of the function u(k)[t] at k → ∞
converges to u∗[t] by the norm of the space C([0, T ], h, RnN ). Theorem 1 is
proved.

Sufficient conditions for the feasibility and convergence of the proposed
algorithm, as well as the existence of a unique solution to the problem (1),(2),
provided that the

diag(1− a21, 1− a22, . . . , 1− a2n)

matrix is not degenerate, are established.

Theorem 2. Let the condition of Theorem 1 be satisfied, the matrix Q(h)
be invertible, and the following inequalities hold:

‖[Q(h)]−1‖ ≤ γ(h),

q(h) =
δ(h)

1− δ(h)
γ(h)max(1, h‖C‖) < 1. (19)

Then problem (1),(2) has a unique solution.

Proof. The invertibility of the Q(h) matrix implies the existence of λ(0) =

(λ
(0)
1 , λ

(0)
2 , . . . , λ

(0)
N ) ∈ RnN and

‖λ(0)‖ = max
r=1,N

‖λ
(0)
r ‖ = ‖[Q(h)]−1F (h)‖

≤ γ(h)(1 + h‖C‖)max(‖f‖, ‖d‖)h.

Since the conditions of Theorem 1 are met, then the special Cauchy problem

has a unique solution u(0)[t] = (u
(0)
1 (t), u

(0)
2 (t), . . . , u

(0)
N (t))′. Substituting the

obtained systems of the function u(0)(t) in the right-hand side of equation (15),

we determine the values of λ(1) = (λ
(1)
1 , λ

(1)
2 , . . . , λ

(1)
N ). Then

‖λ(1) − λ(0)‖ = max
r=1,N

‖λ
(0)
r ‖ = ‖ [Q(h)]−1G(u(0), h)‖

≤ γ(h)(1, h‖C‖)βTh‖u(0) [·]‖2.

Continuing the process, at the k−th step we find a sequence of pairs (λ(k), u(k)[t]),
where λ(k) ∈ RnN , u(k)[t] ∈ C([0, T ], h, RnN ). Estimate the difference of solu-
tions

‖u(k)[·]− u(k−1)[·]‖2
≤ βTh[‖u(k)[·]− u(k−1)[·]‖2 + ‖λ(k) − λ(k−1)‖].

(20)
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Because of (16),

‖u(k)[·]− u(k−1)[·]‖2 ≤
δ(h)

1− δ(h)
‖λ(k) − λ(k−1)‖. (21)

From the system (15) it follows

‖λ(k+1) − λ(k)‖ ≤ ‖[Q(h)]−1‖‖G(u(k), h)−G(u(k−1), h)‖

≤ γ(h)(1, h‖C‖)βTh‖u(k) [·]− u(k−1)[·]‖2.
(22)

Substituting (21) in the right-hand side of (22) we get

‖λ(k+1) − λ(k)‖ ≤ q(h)‖λ(k) − λ(k−1)‖, k = 1, 2, ... . (23)

As q(h) < 1, the inequalities (21), (23) imply the convergence of the sequence
λ(k) to λ∗ and the convergence of the sequence of functions u(k)[t] with respect
to the norm of the space C([0, T ], h, RnN ) to a function u∗[t].

As the pair (λ∗, u∗[t]) is the solution of the problem (8)–(11), then by virtue
of the conditions (16), (19), the function x∗(t) defined by the equalities x∗(t) =
u∗r(t) + λ∗

r , t ∈ [(r− 1)h, rh), r = 1, N , x∗(T ) = λ∗
N + lim

t→T−0
u∗N (t) will be the

solution of the problem (3), (4). And if the diag(1 − a21, 1 − a22, . . . , 1 − a2n)
matrix is not degenerate, x∗(t) will be the solution of the problem (1), (2).

Theorem 2 is proved.

In [16], the sufficient and necessary conditions were established for the
unique solvability of the linear boundary value problem for a system of integro-
differential equations

dx

dt
=

T∫

0

K(t, s)x(s)ds + f(t), t ∈ [0, T ], (24)

Bx(0) + Cx(T ) = d, d ∈ Rn. (25)

Theorem 3. (see [16]) Problem (16), (17) is uniquely solvable if and only
if there exists h ∈ (0, h0] : Nh = T such that the matrix Q∗(h) is invertible.

Let us now state a corollary of this theorem regarding problem (1), (2).

Corollary 4. Problem (1), (2) is uniquely solvable if and only if there
exists h ∈ (0, h0] : Nh = T such that the matrix Q∗(h) is invertible.
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Here h0 is determined by the condition q(h0) =
T

1+a
βh0 < 1.
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