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Abstract: In a weighted Sobolev space on the whole real axis, we obtain
the sufficient conditions for the well-posed and unique solvability of m,n order
operator-differential equations. These conditions were formulated only by the
operator coefficients of the considered equation. According to the values of m,n

the operator-differential equation has complicated and multiple characteristics.
In addition, by using the main part of the equation, the norms of the operators of
intermediate derivative were estimated. We deduce the relationship between the
exponent of the weight and the lower bound of the spectrum of the operator of
the main part of the equation. As an applied result of this paper, we formulated
a problem for higher-order partial differential equations and we provided an
alternative method for obtaining the regular solvability of operator pencil.
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1. Introduction

The theory of operator-differential equations in Banach or Hilbert space played
a key role in searching both of the ordinary and the partial differential opera-
tors (see [25]). In this paper, the investigated equation expressed an interest in
applications, for instance, the dynamic problems of arches as well as rings and
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modeling the stability of the plates from plastic (see [21], [25]). The solvability
of initial boundary value problems for higher order operator differential equa-
tions has been researched by many authors as A.A. Gasymov, V.I. Gorbachuk,
M.L. Gorbachuk, S.Ya. Yakubov, V.N. Pilipchuk and their followers (see [6],
[9], [19], [20], [22], [24]). Nowadays, a large number of papers concerning the
study of solvability of the operator differential equations in Hilbert or Banach
spaces has been published. The principal part of the investigated equation
has mixed multiple-complicated characteristics with m,n order (m,n ≥ 1). It
should be noted that for specific values of m,n, the solvability problem for sec-
ond (m = 0, n = 2), third (m = 1, n = 2), fourth (m = 1, n = 3) and fifth
(m = 5, n = 0)− order operator differential equations have been studied else-
where (see [1]-[7], [16]). This study differs from the study in work [5]. The main

part of the equation in work [5] contains du(t)
dt

and dnu(t)
dtn

terms, (t ∈ [0,+∞))
with only multiple characteristics while in this study the solvability problem for
operator-differential equations include dmu(t)

dtm
and dnu(t)

dtn
terms, (t ∈ (−∞,+∞))

with both complicated and multiple characteristics. The m,n-order differential
equations are very difficult to solve because they must be solved in more com-
plete form as the main part of the equation contains dmu(t)

dtm
and dnu(t)

dtn
terms.

In the whole real axis and in a weighted Sobolev space, the general higher-
order operator-differential equations with complicated and multiple character-
istic have not been studied yet. The interest of this paper is to provide a general
case of the solvability for operator-differential equations in a weighted Sobolev
space that cover many applications in the future.

In a separable Hilbert space H, we have the following operator-differential
equations:

(

d

dt
−A

)m(
d

dt
+A

)n

u(t) +
m+n
∑

j=0

Am+n−ju
(j) (t) = f (t),

t ∈ R = (−∞,+∞), (1)

where A is a self-adjoint positive-definite operator (A = A∗ ≥ σ0E, σ0 > 0),
σ0 is the lower bound of spectrum (σ0 ∈ σ(A)), E is the unit operator, and
Aj , j = 0,m+ n are generally linear unbounded operators. All derivatives are
understood in the sense of distributions theory. We consider f(t) ∈ L2,α =
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L2,α(R;H), u(t) ∈ W n+m
2,α (R;H), and α ∈ R, where

L2,α =

{

f(t) : ‖f(t)‖L2,α =

(
∫ +∞

−∞
‖f(t)‖2He−αtdt

)

1
2

< +∞
}

,

W n+m
2,α (R;H) =

{

u(t) :
dn+mu(t)

dtn+m
∈ L2,α, A

n+mu(t) ∈ L2,α

}

,

‖u‖Wn+m
2,α (R;H)

=

(

∫ +∞

−∞

(

‖An+m(u)‖2L2,α
+

∥

∥

∥

∥

dn+m(u)

dtn+m

∥

∥

∥

∥

2

L2,α

e−αtdt

))
1
2

< +∞.

At α = 0, for simplification we denote the space L2,0(R;H) by L2(R;H) and
the space W n+m

2,0 (R;H) by W n+m
2 (R;H) (see [15], [18]).

Definition 1. If for any f (t) ∈ L2,α (R;H) there exists a vector func-
tion u(t) ∈ W n+m

2,α
(R;H) that satisfies (1) almost everywhere in R, and the

inequality
‖u‖Wn+m

2,α
(R;H) ≤ const ‖f‖L

2,α

is true, then u(t) is called a regular solution of equation (1) and equation (1)
is called regularly solvable (see [1], [2], [12], [16]).

We denote

P0u (t) =

(

d

dt
−A

)m(
d

dt
+A

)n

u(t), (2)

P1u (t) =
m+n
∑

j=0

Am+n−ju
(j) (t) . (3)

Then equation (1) can be written in the form

Pu(t) ≡ P0u(t) + P1u(t) = f(t), t ∈ R.

2. Main results

Theorem 2. Let |α| < 2σ0. Then the operator P0 is an isomorphism from
Wm+n

2,α (R;H) to L2,α (R;H) (see [2]-[6], [11]).
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Proof. Equation (2) can be written in the form:

P0

(

d

dt
;A

)

u (t) = f(t), (4)

where f(t) ∈ L2,α (R;H) , u(t) ∈ W n+m
2,α (R;H).

Let u(t) = v(t)e
α
2
t, then equation (2) takes the form

P0,α

(

d

dt
+

α

2
;A

)

v (t) = g(t), (5)

where v(t) ∈ W n+m
2 (R;H), g(t) = f(t)e

−α
2

t ∈ L2 (R;H) . Since the map-
ping v(t) → u(t)e−

α
2
t is an isomorphism between the spaces W n+m

2 (R;H) and
W n+m

2,α (R;H), It is sufficient to prove that P0,α : Wm+n
2 (R;H) → L2(R;H) is

an isomorphism, where

P0,αv(t) ≡
(

d

dt
+

α

2
−A

)m(
d

dt
+

α

2
+A

)n

v(t) = g(t). (6)

So we must find the solution of (6) in the form

v(t) =

∫ +∞

−∞
G(t− s)g(s)ds ≡ P−1

0,αg.

By using Fourier transform for (6), we obtain

(

iζE +
α

2
E −A

)m (

iζE +
α

2
E +A

)n ∼
v (ζ) =

∼
g (ζ) , ζ ∈ R, (7)

where
∼
v (ζ) and

∼
g (ζ) are Fourier transforms for the functions v(t) and g(t),

respectively. For |α| < 2σ0, the operator pencil

(

iζE +
α

2
E −A

)m (

iζE +
α

2
E +A

)n ∼
v (ζ) =

∼
g (ζ)

is invertible and moreover,

∼
v (ζ) =

(

iζE +
α

2
E −A

)−m (

iζE +
α

2
E +A

)−n ∼
g (ζ) , (8)

hence
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v(t) =
1√
2π

∫ +∞

−∞

(

iζE +
α

2
E −A

)−m (

iζE +
α

2
E +A

)−n

×
∼
g (ζ) eiζtdζ, t ∈ R

=
1

2π

∫ +∞

−∞
(iζE +

α

2
E −A)−m(iζE +

α

2
E +A)−n

×
(
∫ +∞

−∞
g(s)e−iζsds

)

eiζtdζ

=

∫ +∞

−∞

1

2π

∫ +∞

0
(iζE +

α

2
E −A)−m(iζE +

α

2
E +A)−neiζ(t−s)

× dζg(s)ds =

∫ +∞

−∞
G(t− s)g(s)ds,

then

G(t− s) =
1

2π

∫ +∞

−∞
(iζE +

α

2
E −A)−m(iζE +

α

2
E +A)−neiζ(t−s)dζ.

By taking iζ = w, then

G(t− s) =
1

2πi

∫ +i∞

−i∞
(ωE +

α

2
E −A)−m(ωE +

α

2
E +A)−new(t−s)dω.

If µ ∈ σ(A), then

G(t− s) =
1

2πi

∫ +i∞

−i∞

eω(t−s)

(ω + α
2 − µ)m(ω + α

2 + µ)n
dω.

Using the Cauchy integral:
If t > s, we get



152 A.B. I. Ahmed

G(t− s) = Resω=−µ−α
2

eω(t−s)

(ω + α
2 − µ)m(ω + α

2 + µ)n

=
1

(n− 1)!
lim

ω→−µ−α
2

dn−1

dwn−1

[

eω(t−s)

(ω + α
2 − µ)m

]

=
1

(n− 1)!

2
∑

k=0

2−(n+m)+1(n− k)(n− 1)![µ(t − s)]k

2(−k)k!µ(n+m)−1
e−(µ+α

2
)(t−s)

+
1

(n− 1)!

n−1
∑

k=3

2−(n+m)+1(n− 1)![µ(t − s)]k

2(−k)k!µ(n+m)−1
e−(µ+α

2
)(t−s)

=

2
∑

k=0

2−(n+m)+1(n − k)[µ(t− s)]k

2(−k)k!
e−(µ+α

2
)(t−s)µ−(n+m)+1

+
n−1
∑

k=3

2−(n+m)+1[µ(t− s)]k

2(−k)k!
e−(µ+α

2
)(t−s)µ−(n+m)+1,

similarly for t < s, we have

G(t− s) = Resω=µ−α
2

eω(t−s)

(ω + α
2 − µ)m(ω + α

2 + µ)n

=
1

(m− 1)!
lim

ω→µ−α
2

dm−1

dwm−1

[

eω(t−s)

(ω + α
2 + µ)n

]

=
1

(m− 1)!

2
∑

k=0

2−(n+m)+1(m− k)(m− 1)![µ(t− s)]k

2(−k)k!µ(n+m)−1
e(µ−

α
2
)(t−s)

+
1

(m− 1)!

m−1
∑

k=3

2−(n+m)+1(m− 1)![µ(t− s)]k

2(−k)k!µ(n+m)−1
e(µ−

α
2
)(t−s)

=

2
∑

k=0

2−(n+m)+1(m− k)[µ(t− s)]k

2(−k)k!
e(µ−

α
2
)(t−s)µ−(n+m)+1

+

m−1
∑

k=3

2−(n+m)+1[µ(t− s)]k

2(−k)k!
e(µ−

α
2
)(t−s)µ−(n+m)+1.
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From the spectral expansion of operator A, (µ ∈ σ(A), we get

G(t−s) =



























∑2
k=0Qm,n[A(t− s)]ke−(A+α

2
E)(t−s)A−(n+m)+1

+
∑n−1

k=3 Rm,n[A(t− s)]ke−(A+α
2
E)(t−s)A−(n+m)+1, t > s

∑2
k=0 Sm,n[(A− α

2E)(t− s)]ke(A−α
2
E)(t−s)A−(n+m)+1

+
∑m−1

k=3 Tm,n[A(t− s)]ke(A−α
2
E)(t−s)A−(n+m)+1, t < s,

(9)
where

Qm,n =
2−(n+m)+1(n− k)

2(−k)k!
, Rm,n =

2−(n+m)+1

2(−k)k!
,

Sm,n
2−(n+m)+1(m− k)

2(−k)k!
, Tm,n

2−(n+m)+1

2(−k)k!
, m, n ≥ 2.

The solution v(t) satisfies equation (6) almost everywhere.

According to (8), now we show that v (t) ∈ Wm+n
2 (R;H). By using Parse-

val’s equality, we obtain:

‖v‖2
Wm+n

2 (R;H)
=

∥

∥

∥

∥

dm+nv

dtm+n

∥

∥

∥

∥

2

L2(R;H)

+
∥

∥Am+nv
∥

∥

2

L2(R;H)

=
∥

∥

∥
(iζ)m+n∼v (ζ)

∥

∥

∥

2

L2(R;H)
+
∥

∥

∥A
m+n∼v (ζ)

∥

∥

∥

2

L2(R;H)

=

∥

∥

∥

∥

(iζ)m+n
(

iζE +
α

2
E −A

)−m (

iζE +
α

2
E +A

)−n ∼
g (ζ)

∥

∥

∥

∥

2

L2(R;H)

+

∥

∥

∥

∥

A
m+n

(

iζE +
α

2
E −A

)−m (

iζE +
α

2
E +A

)−n ∼
g (ζ)

∥

∥

∥

∥

2

L2(R;H)

≤ sup
ζ∈R

∥

∥

∥

∥

iζm+n
(

iζE +
α

2
E −A

)−m (

iζE +
α

2
E +A

)−n
∥

∥

∥

∥

2

H→H

×
∥

∥

∥

∼
g (ζ)

∥

∥

∥

2

L2(R;H)

+ sup
ζ∈R

∥

∥

∥

∥

Am+n
(

iζE +
α

2
E −A

)−m (

iζE +
α

2
E +A

)−n
∥

∥

∥

∥

2

H→H

×
∥

∥

∥

∼
g (ζ)

∥

∥

∥

2

L2(R;H)
.

(10)
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As σ (A) is a spectrum of the operator A, then:

sup

ζ∈R

∥

∥

∥
(iζ)m+n

(

iζE + α
2E −A

)−m (
iζE + α

2E +A
)−n

∥

∥

∥

H→H

≤ sup

ζ∈R
sup

σ∈σ(A)

∣

∣

∣
(iζ)m+n

(

iζ + α
2 − σ

)−m (
iζ + α

2 + σ
)−n
∣

∣

∣

= sup
ζ∈R

|ζ|m+n

(ζ2+(σ+α
2 )2)

m+n
2

≤ 1,

(11)

sup
ζ∈R

∥

∥

∥
Am+n

(

iζE + α
2E −A

)−m (
iζE + α

2E +A
)−n

∥

∥

∥

H→H

≤ sup
ζ∈R

sup
σ∈σ(A)

∣

∣

∣
σm+n

(

iζ + α
2 − σ

)−m (
iζ + α

2 + σ
)−n
∣

∣

∣

= sup
σ∈σ(A)

σm+n

(ζ2+(σ+α
2 )2)

m+n
2

≤ 1.

(12)

From (12) and (11) into (10) we obtain:

‖v‖2
Wm+n

2 (R;H)
≤ 2

∥

∥

∥

∼
g (ζ)

∥

∥

∥

2

L2(R;H)
= 2 ‖g (t)‖2L2(R;H) , (13)

where
∼
v(ζ) and

∼
g(ζ) are the Fourier transforms of the functions v(t) and g(t),

respectively. Then v (t) ∈ Wm+n
2 (R;H) . Similarly we can prove the bounded-

ness of the operator P0,α, hence

‖P0,αv‖2L2(R;H) ≤ const ‖v‖2
Wm+n

2 (R;H)
.

Using the Banach theorem on the inverse operator (see [10], [13]), there exists a
bounded inverse operator P−1

0,α : L2 (R;H)

→ Wm+n
2 (R;H). Then the theorem is proved.

Remark. The operators of intermediate derivatives:

Aj d
n+m−ju

dtn+m−j
: W n+m

2,α (R;H) → L2,α (R;H) , j = 0,m+ n,

are continuous.

Now we estimate the norms of intermediate derivative operators participat-
ing in the main part of the equation (1) for finding the exact conditions on
regular solvability of the investigated equation, expressed only by its operator
coefficients.

From Theorem 2, we have that the norms ‖P0u‖L2,α(R;H) and ‖u‖Wm+n
2,α (R;H)

are equivalent in the space Wm+n
2,α (R;H), then we can estimate the norms of

intermediate derivatives operators by the norm ‖P0u‖L2,α(R;H) (see [14]).
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Theorem 3. The operator P1 : W n+m
2,α (R;H) → L2,α (R;H) is continu-

ous, provided that the operators AjA
−j, j = 0,m+ n, are bounded in H (see

[2]-[4]).

Proof. Since u(t) ∈ W n+m
2,α (R;H) then from the theorem on intermediate

derivatives (see [14]), we have

‖P1u‖L2,α ≤
n+m
∑

j=0

‖AjA
−j‖H→H

∥

∥

∥

∥

Aj d
n+m−ju

dtn+m−j

∥

∥

∥

∥

L2,α

≤ const ‖u‖Wn+m
2,α (R;H).

The theorem is proved.

It follows by Theorem 2 and Theorem 3 that the following lemma is true:

Lemma 4. Consider that the operators AjA
−j , j = 0, n +m, are bounded

on H. Then the operator P , in case Aj 6= 0 acting from the space W n+m
2,α (R;H)

to L2,α be bounded (see [15], [16]).

Theorem 5. Let |α| < 2σ0. Then for any u (t) ∈ Wm+n
2,α (R;H), the

following inequalities hold:
∥

∥

∥

∥

Am+n−j d
ju (t)

dtj

∥

∥

∥

∥

L2,α

≤ bj ‖P0u‖L2,α
, (14)

where

bj =



















1

(m+n)
m+n

2
j

j

2 (m+ n− j)
m+n−j

2 , j = 1,m+ n− 1, m 6= n,

(

m+n−j
m+n

)
m+n−j

2(m+n)
(

j
m+n

)
j

2(m+n)
, j = 1,m+ n− 1, m = n,

1, j = 0,m+ n.

Proof. Apply the Fourier transformation on equation (6) (see [1]-[3]), we
get

∥

∥

∥

∥

Am+n−j (iζ)
j
(

iζE +
α

2
E −A

)−m (

iζE +
α

2
E +A

)−n ∼

g (ζ)

∥

∥

∥

∥

L2(R;H)

≤ sup
ζ∈R

∥

∥

∥

∥

Am+n−j (iζ)
j
(

iζE +
α

2
E −A

)−m (

iζE +
α

2
E +A

)−n
∥

∥

∥

∥

H→H

×
∥

∥

∥

∼

g (ζ)
∥

∥

∥

L2(R;H)
.

(15)
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For ζ ∈ R, we estimate the following norms:

∥

∥

∥

∥

Am+n−j (iζ)j
(

iζE +
α

2
E −A

)−m (

iζE +
α

2
E +A

)−n
∥

∥

∥

∥

H→H

≤ sup
σ∈σ(A)

∣

∣

∣

∣

σm+n−j (iζ)j
(

iζ +
α

2
− σ

)−m (

iζ +
α

2
+ σ

)−n
∣

∣

∣

∣

= sup
σ∈σ(A)

∣

∣

∣

∣

∣

σ−j (iζ)j
(

i
ζ

σ
− (− α

2σ
+ 1)

)−m(

i
ζ

σ
+ (

α

2σ
+ 1)

)−n
∣

∣

∣

∣

∣

≤ sup
µ= ζ2

σ2≥0

µ
j / 2

(µ+ 1)
(m+n) / 2

= bj .

(16)

Finally, from (15) we have

∥

∥

∥

∥

Am+n (iζ)j (iE−A)−m (iζE +A)−n
∼

f (ζ)

∥

∥

∥

∥

L2,α

≤ bj

∥

∥

∥

∥

∼
f (ζ)

∥

∥

∥

∥

L2,α

. (17)

Now, we introduce the following specific cases at certain values of m and n:

Case (i) m = 3, n = 0, then we have an initial-boundary value problem of
a third order operator-differential equation with multiple characteristics with

b1 = b2 =
2

3
√
3
(see [23]).

Case (ii) m = 0, n = 3, then we have an initial-boundary value problem of
a fourth order operator-differential equation with multiple characteristics with

b1 = b2 =
2

3
√
3
(see [17]).

Case (iii) m = 3, n = 1, then we have an initial-boundary value problem of
a fourth order operator-differential equation with multiple characteristics with

b1 = b3 =
3
√
3

16 , b2 =
1
4 .

Case (iv) m = 1, n = 3, then we have an initial-boundary value problem of
a fourth order operator-differential equation with complicated characteristics
with

b1 = b3 =
3
√
3

16 , b2 =
1
4 (see [7]).

Now in H2(m+n) we consider the following pencil operator

Qj(λ, β,A) =

{ (

(iλ)2E +A2
)m+n − β(iλ)2jA2(m+n)−2j , m 6= n,

λ2(m+n)E +A2(m+n) − β(iλ)2jA2(m+n)−2j , m = n,
(18)
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β is a real parameter. From (18) we have

Bm+n,j =



















(m+ n)
m+n

j−j
(

1
m+n−j

)m+n−j

, m 6= n, j = 1,m+ n− 1,
(

m+n
m+n−j

)

m+n−j

(m+n)
(

m+n
j

)

j

(m+n)

, m = n, j = 1,m+ n− 1,

1, j = 0,m+ n.

(19)

Theorem 6. For β ∈ [0, Bm+n,j), j = 0,m+ n, the operator pencils
Qj(λ, β,A) can be represented in the form

Qj(λ, β,A) = Q−
j (λ, β,A)Q

+
j (−λ, β,A), j = 0,m+ n, (20)

where

Q−
j (λ, β,A) =

m+n
∑

i=0

αi,jλ
iAm+n−i,

Q+
j (−λ, β,A) =

m+n
∑

i=0

αi,j(−λ)iAm+n−i,

and satisfy the following system of equations:

Qj(λ, β,A) =

(

m+n
∑

i=0

αi,jλ
iAm+n−i

)(

m+n
∑

i=0

αi,j (−λ)i Am+n−i

)

. (21)

Proof. For β ∈ [0, Bm+n,j), j = 0,m+ n, the polynomial

Qj(λ, β) =

{ (

(iλ)2 + 1
)m+n − β(iλ)2j , m 6= n,

λ2(m+n) + 1− β(iλ)2j , m = n,

has not purely imaginary roots, its roots are simple and symmetrically situated
relatively to the real axis and the origin. So it can be represented in the form

Qj(λ, β) = Q−
j (λ, β)Q+

j (−λ, β) ,

Q−
j (λ, β) =

m+n
∏

i=1

(λ− ωi,j(β)) ,

where ωi,j(β) are the roots of Q−
j (λ, β), Reωi,j(β) < 0,

hence

Q−
j (λ, β) =

m+n
∑

i=1

αi,j(β)λ
i, αi,j > 0 are real coefficients.
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Let Eσ be the spectral decomposition of A.
For the case m 6= n:

Qj(λ, β,A) =
(

(iλ)2E +A2
)m+n − β(iλ)2jA2(m+n)−2j

=

∫ ∞

σ0

(

(iλ)2 + σ2
)m+n − β(iλ)2jσ2(m+n)−2jdEσ

=

∫ ∞

σ0

σ2(m+n)

[

(

(iλ)2

σ2
+ 1

)m+n

− β
(iλ)2j

σ2j

]

dEσ

=

∫ ∞

σ0

σ2(m+n)Qj

(

λ

σ
, β

)

dEσ

=

∫ ∞

σ0

σ2(m+n)Q−
j

(

λ

σ
, β

)

Q+
j

(

−λ

σ
, β

)

dEσ

=

∫ ∞

σ0

σ(m+n)Q−
j

(

λ

σ
, β

)

dEσ

∫ ∞

σ0

σ(m+n)Q+
j

(

−λ

σ
, β

)

dEσ

=

(

m+n
∑

i=0

αi,j(β)λ
iAm+n−i

)(

m+n
∑

i=0

αi,j(β) (−λ)iAm+n−i

)

.

By taking

Q−
j (λ, β,A) =

m+n
∑

i=o

αi,j(β)λ
iAm+n−i,

we get
Qj (λ, β,A) = Q−

j (λ, β,A)Q+
j (−λ, β,A) .

Similarly for the case m = n.

For example,
(i) If m = 1, n = 3 satisfy the following system of equations:
(1) for j = 0















α0,0(β) =
√
1− β,

2α2,0(β)− α2
3,0(β) + 4 = 0,

2α0,0(β)α4,0(β) + α2
2,0(β)− 2α1,0(β)α3,0(β) − 6 = 0,

2α0,0(β)α2,0(β)− α2
1,0(β) + 4 = 0;

(2) for j = 1







2α2,1(β)− α2
3,1(β) + 4 = 0,

2α0,1(β)α4,1(β) + α2
2,1(β)− 2α1,1(β)α3,1(β) − 6 = 0,

2α0,1(β)α2,1(β)− α2
1,1(β) + 4 = β;
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(3) for j = 2







2α2,2(β)− α2
3,2(β) + 4 = 0,

2α0,2(β)α4,2(β) + α2
2,2(β)− 2α1,2(β)α3,2(β)− 6 + β = 0,

2α0,2(β)α2,2(β)− α2
1,2(β) + 4 = 0;

(4) for j = 3







2α2,3(β)− α2
3,3(β) + 4− β = 0,

2α0,3(β)α4,3(β) + α2
2,3(β)− 2α1,3(β)α3,3(β)− 6 = 0,

2α0,3(β)α2,3(β)− α2
1,3(β) + 4 = 0;

(5) for j = 4















α4,4(β) =
√
1 + β,

2α2,4(β)− α2
3,4(β) + 4 = 0,

2α0,4(β)α4,4(β) + α2
2,4(β)− 2α1,4(β)α3,4(β) − 6 = 0,

2α0,4(β)α2,4(β)− α2
1,4(β) + 4 = 0;

(ii) If m = 2, n = 2 satisfy the following system of equations:
(1) for j = 0















α0,0(β) =
√
1− β,

α2
1,0(β)− 2α0,0(β)α2,0(β) = 0,

α2
2,0(β) − 2α1,0(β)α3,0(β) + 2α0,0(β) = 0,

α2
3,0(β)− 2α2,0(β) = 0;

(2) for j = 1







α2
3,1(β)

2 − 2α2,1(β) = 0,

α2
1,1(β)− 2α2,1(β) + β = 0,

α2
2,1(β)− 2α1,1(β)α3,1(β) + 2 = 0;

(3) for j = 2







α2
1,2(β)− 2α2,2(β) = 0,

α2
3,2(β)− 2α2,2(β) = 0,

α2
2,2(β)− 2α1,2(β)α3,2(β) + 2 = −β;

(4) for j = 3






α3,3(β)− 2α2,3(β) = −β,

α2
1,3(β)− 2α2,3(β) = 0,

α2
2,3(β)− 2α1,3(β)α3,3(β) + 2 = 0;
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(5) for j = 4














α4,4(β) =
√
1− β, ,

α2
1,4(β) − 2α0,4(β)α2,4(β) = 0,

α2
2,4(β)− 2α1,4(β)α3,4(β) + 2α4,4(β) = 0,

α2
3,4(β)− 2α2,4(β)α4,4(β) = 0.

Lemma 7. Let β ∈ [0, Bm+n,j), then for any u ∈ Wm+n
2,α (R;H)

∥

∥

∥

∥

Q−
j

(

d

dt
;β;A

)

u

∥

∥

∥

∥

2

L2(R;H)

= ‖P0u‖2,αL2,α
− β

∥

∥

∥

∥

Am+n−j d
j

dtj
u

∥

∥

∥

∥

2

L2,α

, j = 0,m+ n.

(22)

From Theorem 5 and the theorem of intermediate derivatives (see [18]) the
norms ‖u‖Wm+n

2,α (R;H) and ‖P0u‖L2(R;H) are equivalent in the spaceWm+n
2,α (R;H).

Therefore, the numbers

Nj = sup
06=u∈Wm+n

2,α (R;H)

∥

∥

∥
Am+n−j dj

dtj
u
∥

∥

∥

L2,α

‖P0u‖L2,α

, j = 0,m+ n,

are finite numbers. To find exact values of these numbers, we provide the
following lemma:

Theorem 8. The numbers Nj are determined as follows:

Nj = bj, j = 0,m+ n.

Proof. As (22) goes to the limit as β → Bm+n,j, it is clear that for any
vector function u(t) ∈ Wm+n

2,α (R;H):

‖P0u‖2L2,α
≥ Bm+n,j

∥

∥

∥

∥

Am+n−j d
j

dtj
u

∥

∥

∥

∥

2

L2,α

, j = 0,m+ n. (23)

So, Nj ≤ Bm+n,j , j = 0,m+ n. Moreover, we must show thatNj = Bm+n,j, j =
0,m+ n is also hold. To do this, it is sufficient for any δ > 0, there exist a
vector function uδ(t) ∈ Wm+n

2,α (R;H) such that the functional

χ(uδ(t)) ≡ ‖P0uδ‖2L2,α
− (δ +Bm+n,j)

∥

∥

∥

∥

Am+n−j d
j

dtj
uδ

∥

∥

∥

∥

2

L2,α

< 0. (24)
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Let the vector ν ∈ D(Am+n) such that ‖ν‖ = 1, r(t) ∈ Wm+n
2,α (R;H) be scalar

function. Using Parseval’s equality, we obtain

χ(r(t)ν) = ‖P0(r(t)ν)‖2L2,α
− (δ +Bm+n,j)

∥

∥

∥

∥

Am+n−j d
jr(t)

dtj
ν

∥

∥

∥

∥

2

L2,α

=

∫ +∞

−∞

(

(P0(−iζ;A)ν, P0(−iζ;A)ν) |r̃(ζ)|2

− ζ2j(δ +Bm+n,j)(A
m+n−jν,Am+n−jν) |r̃(ζ)|2

)

dζ

=

∫ +∞

−∞

(

P0(−iζ;A)P0(−iζ;A)ν

− ζ2j(δ +Bm+n,j)A
2(m+n−j)ν, ν) |r̃(ζ)|2

)

dζ

=

∫ +∞

−∞
(Pj(iζ; δ +Bm+n,j;A)ν, ν) |r̃(ζ)|2 dζ,

(25)

where r̃(ζ) is the Fourier transform of r(t). Then it is necessary to show that
(Pj(iζ; δ + Bm+n,j;A)ν, ν) for a given vector ν has negative values in some
interval (ǫ−, ǫ+). For σ0 > 0 is an eigenvalue of A, and ζ is its corresponding
eigenvector, then

(Pj(iζ; δ +Bm+n,j;A)ν, ν) = (Pj(iζ; δ +Bm+n,j;σ0)ν, ν).

From the properties of the polynomial Pj(iζ;β;σ0), it is negative for β = δ +
Bm+n,j for sufficiently small δ > 0. If σ0 ∈ σ(A) is not an eigenvalue, then σ0
is close to an eigenvalue, i.e. there exist a vector νδ such that ‖νδ‖ = 1 and

(Pj(iζ; δ +Bm+n,j;A)νδ , νδ) = (Pj(iζ; δ +Bm+n,j;σ0)νδ, νδ) + 0(δ)

as δ → 0.

In which, the smallest value of (Pj(iζ; δ +Bm+n,j;A)ν, ν)) is negative for suffi-
ciently small δ and some νδ. Then there exist an interval (ǫ−, ǫ+) such that

(Pj(iζ; δ +Bm+n,j;A)ν, ν)) < δ, ζ ∈ (ǫ−, ǫ+).

Further, we consider the m+ n times differentiable function r̃(ζ), ζ ∈ (ǫ−, ǫ+),
then from the negativity of (Pj(iζ; δ+Bm+n,j ;A)νδ , νδ)) in the interval (ǫ−, ǫ+)
and from (25), we obtain

χ(r(t)νδ) =

∫ ǫ+

ǫ−
(Pj(iζ; δ +Bm+n,j ;A)νδ, νδ) |r̃(ζ)|2 dζ < 0.

Consequently, Nj = bj , j = 0,m+ n.
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Theorem 9. Let A = A∗ ≥ σ0E (σ0 > 0), |α| < 2σ0, the operators
AjA

−j, j = 0,m+ n are bounded in H and holds the inequality
m+n
∑

j=0

bj

∥

∥

∥
Am+n−jA

−(m+n−j)
∥

∥

∥

H→H
< 1, (26)

in which the numbers bj, j = 0,m+ n, are determined in Theorem 5, then the
equation (1) is regularly solvable.

Proof. From Theorem 2, the operator P0 has a bounded inverse operator
P0

−1 acting from L2,α (R;H) to Wm+n
2,α (R;H). Then equation (1) can be writ-

ten as
(

E + P1P
−1
0

)

z(t) = f(t),

where P0u(t) = z(t). To prove the existence of a solution, we must show that
the norm

∥

∥p1 p
−1
0

∥

∥

L2,α(R;H)→L2,α(R;H)
< 1.

By Theorem 2, we have
∥

∥P1P
−1
0 z

∥

∥

L2,α
= ‖P1u‖L2,α

≤
∑m+n

j=0

∥

∥

∥
Aj

dm+n−ju
dtm+n−j

∥

∥

∥

L2,α

≤∑m+n
j=0

∥

∥AjA
−j
∥

∥

H→H

∥

∥

∥
Aj dm+n−ju

dtm+n−j

∥

∥

∥

L2,α

≤∑m+n
j=0 bj

∥

∥AjA
−j
∥

∥

H→H
‖P0u‖L2,α

=
∑m+n

j=0 bj
∥

∥AjA
−j
∥

∥

H→H
‖z‖L2,α

.

Consequently,

∥

∥P1P
−1
0

∥

∥

L2,α→L2,α
≤

m+n
∑

i=0

bj
∥

∥AjA
−j
∥

∥

H→H
< 1.

Providing that the operator E + P1P
−1
0 is invertible in L2 (R;H), hence u (t)

can be determined by u (t) = P−1
0

(

E + P1P
−1
0

)−1
f (t). Moreover,

‖u‖Wm+n
2,α

≤
∥

∥p−1
0

∥

∥

L2,α→Wm+n
2,α (R;H)

×
∥

∥

∥

((

E + P1P
−1
0

))−1
∥

∥

∥

L2(R;H)→L2,α

‖f‖L2,α(R;H)

≤ const ‖f‖L2,α
.

(27)

The theorem is proved.

Consider a polynomial operator pencil (see [8]) of a m+ n order in H is

P (λ) =

m
∏

k=1

(λ+ µkA)

n
∏

k=1

(λ+ µkA) +

m+n−1
∑

j=1

Am+n−jλ
(j), (28)
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P0(λ) =

m
∏

k=1

(λ+ µkA)

n
∏

k=1

(λ+ µkA) ,

P1(λ) =

m+n−1
∑

j=1

Am+n−jλ
(j).

According to Theorem 3, it suffices to establish the following theorem (see [5],
[21], [20]).

Theorem 10. Suppose that the operators AjA
−j are bounded operators

in H , j = 0,m+ n− 1 and the inequality
m+n−1
∑

j=0

bj‖AjA
−j‖H→H < 1,

holds true, where bj , j = 0,m+ n are calculated in Theorem 5, then the resol-
vent of the pencil (28) exists on the imagery axis and the inequalities

m+n−1
∑

r=0

‖λm+n−rArP−1(λ)‖ ≤ const, (29)

‖AαP−1(λ)‖ ≤ const|λ|α−(m+n), 0 < α < m+ n, λ 6= 0 (30)

hold.

Theorem 11. From Theorem 10, for sufficiently small φ (greater than
zero) on the sectors

Γπ
2
±φ = {λ : λ = rei(

π
2
±φ), r > 0},

Γ−π
2

±φ = {λ : λ = re−i(π
2
±φ), r > 0},

the operator pencil (28) is invertible and the estimates of the form (29) and
(30) hold.

3. Example

As a result of the solvability of the differential equation (1), we introduce the
following problem of partial differential equation as an applied example on the
strip R× [0;π] :

(

∂

∂t
+

∂2

∂x2

)m(
∂

∂t
− ∂2

∂x2

)n

u (t, x)
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+
n+m
∑

j=0

rn+m−j (x)
∂2(n+m)−ju (t, x)

∂tj∂x2(n+m−j)
= f (t, x) , (31)

∂2ku (t, 0)

∂x2k
=

∂2ku (t, π)

∂x2k
= 0, k = 0, n+m, (32)

where rn+m−j (x), j = 0, n +m are bounded functions on [0, π], f (t, x) ∈
L2 (R;L2 [0;π]). We note that problem (31), (32) is a special case and can
be reduced to the operator-differential equation (1) in which:

Aj = rn+m−j (x)
∂2(n+m−j)

∂x2(n+m−j)
, j = 0, n +m.

The operator A is defined on H = L2[0, π] by Au = −d2u
dx2 , and the conditions

u |x=0 = u |x=π = 0. Applying Theorem 10, where

m+n
∑

j=0

bj sup
x∈[0,π]

|rj(x)| < 1,

then problem (31)-(32) has a unique solution

u(x, t) ∈ W
n+m,2(n+m)
t,x,2 (R;L2 [0;π]) .

4. Conclusion

In a weighted Sobolev space for all t ∈ R, we calculated the exact conditions of
regular solvability of equation (1), expressed only by its operator coefficients.

We deduced the relationship between the exponent of the weight (e
−αt
2 ) and

the lower bound (σ0) of the spectrum of the operator of the main part of
the equation. We estimated the norms of intermediate derivative operators
participating in the principle part of the given equation. In the perturbed part
of equation (1), the norms of the linear operators Aj (t), j = 0,m+ n, were
estimated. An alternative method on the regular solvability of operator pencil
was investigated. As an applied result, we formulated a problem of 2(m + n)
order partial differential equations.
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