
International Journal of Applied Mathematics
————————————————————–
Volume 34 No. 1 2021, 137-145
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v34i1.7

ANALOGOUS OF CONVERSE PALEY-WIENER THEOREM

IN THE CONTEXT OF POSITIVE DEFINITE KERNEL

Osmin Ferrer1 §, Arnaldo de la Barrera2,
Jorge Rodriguez3

1 Department of Mathematics, University of Sucre
Sincelejo - 700001, COLOMBIA

2 Department of Mathematics, University of Pamplona
Pamplona - 543050, COLOMBIA

3 Department of Mathematics
University of Atlantico - University of Norte

Barranquilla - 08002, COLOMBIA
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1. Paley-Wiener Theorem

The fundamental criterium of stability, and historically the first one, is due to
Paley and Wiener [4]. It is based on the known fact that a linear bounded
operator T on a Banach space is invertible if

‖I − T‖ < 1.
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Theorem 1. (Paley-Wiener) Let {xn}n∈N be a basis in the Banach space
X, and suppose that {yn}n∈N is a sequence of elements of X such that

∥

∥

∥

∥

∥

N
∑

n=1

cn(xn − yn)

∥

∥

∥

∥

∥

≤ λ

∥

∥

∥

∥

∥

N
∑

n=1

cnxn

∥

∥

∥

∥

∥

,

for all N ∈ N, some constant λ, with 0 ≤ λ < 1 and for any sequence of scalars
{cn}n∈N. Then {yn}n∈N is a basis for X equivalent to {xn}n∈N.

See [5, Theorem 10] for a proof.
The following lemmas are well known, see [5] and [3].

Lemma 2. (Polar Decomposition) Every bounded invertible operator T
on Hilbert space can be factored in the form T = UP , where U is a unitary
operator and P is a positive operator.

Lemma 3. If T is a bounded self-adjoint operator on Hilbert space, then

‖T‖ = sup

{

〈Tf, f〉

‖f‖2
: f 6= 0

}

.

In what follows we present the reciprocal of Paley-Wiener theorem, see [5]
and [3].

If a set {xn} approximately satisfies Parseval’s formula then there exists at
least one orthonormal set which it is near.

Theorem 4. (Duffin and Eachus) Let {yn} be a sequence of elements in
Hilbert space and let θ be a number such that 0 ≤ θ < 1. Suppose that

(1− θ)2
n
∑

i=1

|ai|
2 ≤

∥

∥

∥

∥

∥

n
∑

i=1

aiyi

∥

∥

∥

∥

∥

2

≤ (1 + θ)2
n
∑

i=1

|ai|
2 ,

for each finite scalars a1, a2, ..., an. Then there exists an orthonormal set of
vectors {xn} such that

∥

∥

∥

∥

∥

n
∑

i=1

ai(xi − yi)

∥

∥

∥

∥

∥

≤ θ

(

n
∑

i=1

|ai|
2

)1/2

for each finite scalars a1, a2, ..., an.

See [5, Theorem 10] and [3] for a proof.
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2. Kolmogorov decomposition theorem

2.1. The Hilbert space associated to a positive definite operator

valued kernel

Let {Hn}n∈Z be a family of Hilbert spaces. An operator valued kernel on Z to
{Hn}n∈Z is an application K : Z× Z →

⋃

m,n∈ZL(Hm,Hn) such that

K(n,m) ∈ L(Hm,Hn) for n,m ∈ Z.

In this section and the following one, unless it is otherwise stated, all the
kernels will be operator valued ones.

A sequence {hn} in ⊕n∈ZHn is said to have finite support if hn = 0 except
for a finite number of integers n.

A kernel K on Z to {Hn}n∈Z is a positive definite kernel if

∑

n,m∈Z

〈K(n,m)hm, hn〉Hn
≥ 0,

for every sequence {hn} in ⊕n∈ZHn with finite support.
Let K be a positive definite kernel. Let F be the linear space of elements

⊕

n∈ZHn and Fo be the space of elements in F with finite support.
Define BK : Fo ×Fo → C with

BK(f, g) =
∑

m,n∈Z

〈K(n,m)fm, gn〉Hn
, (1)

for f, g ∈ Fo, f = {fn}, g = {gn}, fn, gn ∈ Hn.
Note that BK satisfies all the properties of an inner product, except for the

fact that the set
NK = {h ∈ Fo : BK(h, h) = 0},

could be non-trivial.
According to the Cauchy-Schwarz inequality

NK = {h ∈ Fo : BK(h, g) = 0, for all g ∈ Fo},

hence NK is a linear subspace of Fo.
The quotient space Fo/NK is also a linear subspace. If [h] stands for the

class of the element h in Fo/NK , then the application

〈[h], [g]〉 = BK(h, g), h, g ∈ Fo,
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is well defined. To prove that 〈·, ·〉 is an inner product on Fo/NK is straight-
forward.

The completion of Fo/NK with respect to the norm induced by this inner
product is a Hilbert space. It is known as the Hilbert space associated to the

positive definite kernel K and it is denoted by HK . The inner product and the
norm of HK will be represented as 〈·, ·〉HK

and ‖ · ‖HK
respectively. This norm

will be named as the norm induced by K.

2.2. Kolmogorov Decomposition Theorem

The following theorem is a version of the classic result of Kolmogorov (see [1]
for a historical review).

Theorem 5. (Kolmogorov) Let K be a positive definite kernel. Then
there exists a Hilbert space HK and a map V defined on Z such that V (n)
belongs to L(Hn,HK) for each n ∈ Z and

(a) K(n,m) = V ∗(n)V (m) if n,m ∈ Z.

(b) HK =
∨

n∈Z

V (n)Hn.

(c) The decomposition is unique in the following sense: if H′ is another
Hilbert space and V ′ defined on Z is an application such that V ′(n) ∈
L(Hn,HK) for each n ∈ Z that satisfies (a) and (b), then there exists a
unitary operator Φ : HK → H′ such that ΦV (n) = V ′(n) for all n ∈ Z.

A proof of this theorem can be found in [6, Theorem 3.1].

An application V that satisfies the property (a) in Theorem 5 will be called
the Kolmogorov Decomposition of the Kernel K or simply, a Decomposition of

the kernel K (see [6]). The property (b) is referred to as the minimality property

of Kolmogorov Decomposition. The meaning of property (c) is that, under the
minimality condition (b), the Kolmogorov decomposition is essentially unique.

The coming result is our version of Theorem 4. This result is related with
Lemmas 2, 3 and the Kolmogorov decomposition.

Theorem 6. Let K : Z × Z → L(H) be a positive definite kernel. Let
K1 : Z × Z → L(H) be a positive definite kernel and θ be a number such that
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0 ≤ θ < 1. Suppose that

(1− θ)2
∑

n,m∈Z

〈K1(n,m)hm, hn〉H ≤
∑

n,m∈Z

〈K2(n,m)hm, hn〉H

≤ (1 + θ)2
∑

n,m∈Z

〈K1(n,m)hm, hn〉H , (2)

for all sequences {hn}n∈Z ⊂ H with finite support. Then there exists a sequence
{gn}n∈Z ⊂ HK for all n ∈ Z such that

∥

∥

∥

∥

∥

∑

n∈Z

(gn − VK(n))hn

∥

∥

∥

∥

∥

HK

≤ θ

∥

∥

∥

∥

∥

∑

n∈Z

VK1
(n)hn

∥

∥

∥

∥

∥

HK1

, (3)

for any sequence {hn}n∈Z ⊂ H with finite support.

Proof. On the one hand let us define a mapping G : HK1
→ HK by

G

(

∑

n∈Z

VK1
(n)hn

)

=
∑

n∈Z

VK(n)hn,

where {hn}n∈Z is a sequence with finite support in H.

On the other hand, since K and K1 are positive definite kernels by the
Kolmogorov decomposition theorem we have

K(n,m) = V ∗
K(n)VK(m), m, n ∈ Z

and

K1(n,m) = V ∗
K1

(n)VK1
(m), m, n ∈ Z.

Taking into account the above expressions

∑

m,n∈Z

〈K(n,m)hm, hn〉H =
∑

m,n∈Z

〈VK(n)∗VK(m)hm, hn〉H

=

〈

∑

m∈Z

VK(m)hm,
∑

n∈Z

VK(n)hn

〉

HK

=

∥

∥

∥

∥

∥

∑

n∈Z

VK(n)hn

∥

∥

∥

∥

∥

2

HK

.

Analogously,

∑

m,n∈Z

〈K1(n,m)hm, hn〉H =

∥

∥

∥

∥

∥

∑

n∈Z

VK1
(n)hn

∥

∥

∥

∥

∥

2

HK1

.
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Thus, if f =
∑

n∈Z
VK1

(n)hn we may express relation (2) in the form

(1− θ) ‖f‖HK1

≤ ‖Gf‖HK
≤ (1 + θ) ‖f‖HK1

. (4)

This shows, in particular, thatG is bounded from below. SinceHK =
∨

n∈Z

VK(n)H,

we have {VK(n)H}n∈Z is complete. Then G has a dense range and so must be
invertible.

From the above results it is obtained that the mapping G satisfies the
conditions of Lemma 2, so G = UP . From (4) it follows that

(1− θ) ‖f‖HK1

≤ ‖Pf‖HK
≤ (1 + θ) ‖f‖HK1

whenever f ∈ HK1
.

Since P is a bounded self-adjoint operator on Hilbert space HK1
by Lemma 3,

(1− θ) 〈f, f〉HK1

≤ 〈Pf, f〉HK1

≤ (1 + θ) 〈f, f〉HK1

.

This may be written as

−θ 〈f, f〉HK1

≤ 〈Pf − f, f〉HK1

≤ θ 〈f, f〉HK1

.

Since

〈Pf − f, f〉HK1

= 〈f, Pf − f〉HK1

,

it follows that P − I is a self-adjoint bounded operator on Hilbert space HK1
,

by Lemma 3, we have

‖f − Pf‖HK1

≤ θ ‖f‖HK1

for all f.

Define gn = UVK1
(n) for n ∈ Z. Moreover,

∥

∥

∥

∥

∥

∑

n∈Z

(gn − VK(n))hn

∥

∥

∥

∥

∥

HK

= ‖U(f − Pf)‖HK
= ‖f − Pf‖HK

≤ θ ‖f‖HK1

= θ

∥

∥

∥

∥

∥

∑

n∈Z

VK1
(n)hn

∥

∥

∥

∥

∥

HK1

.
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3. Applications to Stochastic Processes

3.1. Multivariate Stochastic Processes

In this section it will be used the decomposition of the covariance Kernels of
the stochastic processes (see [6], Section 1, Chapter 6).

Definition 7. A pair [K,X], where K is a Hilbert space and X = {Xn}n∈Z
is a family of operators Xn in L(Hn,K), is called a geometric model of the

multivariate process with correlation kernel K, if

K(m,n) = X∗
mXn.

The Kolmogorov Decomposition Theorem shows that given a positive defi-
nite kernel K, there exists a geometric model of the multivariate process with
correlation kernel K. If [K,X] is the geometric model of the multivariate pro-
cess with covariance kernel K then HX will be the subspace of K generated for
this model, that is,

HX =
∨

n∈Z

XnHn. (5)

If [K′,X ′] is another geometric model of the same process, then the Kolmogorov
Decomposition Theorem guarantees the existence of an unitary operator Φ :
HX → HX′ such that ΦXn = X ′

n for all n ∈ Z. This means that the geometry
of the process is essentially determined by the choice of a geometric model such
that

K =
∨

n∈Z

XnHn. (6)

Theorem 8. (Isomorphism) Let [W,X] be the geometric model of a
multivariate process and let K : Z × Z → L(H) be the kernel of covariance
associated with the process. Then there exists an unit operator Φ : HK → HX

such that
ΦVK(n) = Xn for all n ∈ Z.

Theorem 9. Let [W, Y ] be a geometrical model of a multivariate stochas-
tic process. Let [K,X] be a geometrical model of a multivariate stochastic
process and θ be a number such that 0 ≤ θ < 1. Suppose that

(1− θ)

∥

∥

∥

∥

∥

∑

n∈Z

Xnhn

∥

∥

∥

∥

∥

HX

≤

∥

∥

∥

∥

∥

∑

n∈Z

Ynhn

∥

∥

∥

∥

∥

HY

≤ (1 + θ)

∥

∥

∥

∥

∥

∑

n∈Z

Xnhn

∥

∥

∥

∥

∥

HX

, (7)
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for all sequences {hn}n∈Z ⊂ H with finite support. Then there exists a sequence
{jn}n∈Z ⊂ HY for all n ∈ Z such that

∥

∥

∥

∥

∥

∑

n∈Z

(jn − Yn)hn

∥

∥

∥

∥

∥

HY

≤ θ

∥

∥

∥

∥

∥

∑

n∈Z

Xnhn

∥

∥

∥

∥

∥

HX

, (8)

for any sequence finite support {hn}n∈Z ⊂ H.

Proof. Let K and K1 be two kernels of covariance associated with the pro-
cesses Y = {Yn}n∈Z and X = {Xn}n∈Z, respectively.

Let us consider the operators Φ1 : HK → HY such that

Φ1VK(n) = Yn for all n ∈ Z

and Φ2 : HK1
→ HX such that

Φ2VK1
(n) = Xn for all n ∈ Z.

From above and the hypothesis it follows

(1− θ)2

∥

∥

∥

∥

∥

∑

n∈Z

Φ2VK1
(n)hn

∥

∥

∥

∥

∥

2

HX

≤

∥

∥

∥

∥

∥

∑

n∈Z

Φ1VK(n)hn

∥

∥

∥

∥

∥

2

HY

≤ (1 + θ)2

∥

∥

∥

∥

∥

∑

n∈Z

Φ2VK1
(n)hn

∥

∥

∥

∥

∥

2

HX

, (9)

for a number θ such that 0 ≤ θ < 1 and for all sequence finite support {hn}n∈Z ⊂
H. Since
∥

∥

∥

∥

∥

∑

n∈Z

Φ2VK1
(n)hn

∥

∥

∥

∥

∥

2

HX

=

∥

∥

∥

∥

∥

∑

n∈Z

VK1
(n)hn

∥

∥

∥

∥

∥

2

HK1

=
∑

n,m∈Z

〈K1(n,m)hm, hn〉H ,

and
∥

∥

∥

∥

∥

∑

n∈Z

Φ1VK(n)hn

∥

∥

∥

∥

∥

2

HX

=
∑

n,m∈Z

〈K(n,m)hm, hn〉H .

By Theorem 6, there exists a sequence {gn}n∈Z ⊂ HK for all n ∈ Z such that

∥

∥

∥

∥

∥

∑

n∈Z

(gn − VK(n))hn

∥

∥

∥

∥

∥

HK

≤ θ

∥

∥

∥

∥

∥

∑

n∈Z

VK1
(n)hn

∥

∥

∥

∥

∥

HK1

, (10)
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for any sequence {hn}n∈Z ⊂ H with finite support.
Taking jn = Φ1gn for all n ∈ Z we have

∥

∥

∥

∥

∥

∑

n∈Z

(jn − Yn)hn

∥

∥

∥

∥

∥

HY

=

∥

∥

∥

∥

∥

∑

n∈Z

(gn − VK(n))hn

∥

∥

∥

∥

∥

HK

≤ θ

∥

∥

∥

∥

∥

∑

n∈Z

VK1
(n)hn

∥

∥

∥

∥

∥

HK1

= θ

∥

∥

∥

∥

∥

∑

n∈Z

Φ−1
2 Xnhn

∥

∥

∥

∥

∥

HK1

= θ

∥

∥

∥

∥

∥

∑

n∈Z

Xnhn

∥

∥

∥

∥

∥

HX

,

for any sequence {hn}n∈Z ⊂ H with finite support.
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