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Abstract: In this paper we study the problem of determining two thermal
parameters of a cylindrical metal sample. This is an inverse problem in heat
conduction where boundary conditions are determined on the basis of temper-
ature measurements taken at the selected internal points in the sample. A
hybrid method is used to find the parameters based on the experimental data
of the temperature of a metalic sample. Both the direct and inverse problems
are described and numerical results are given.
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1. Introduction

Parameters estimations of material samples and inverse problems are commonly
used to derive physical models from experiments. To solve the inverse problem,
one must first solve the direct problem, then solve the inverse problem for some
coefficients and parameters. Solving such a problem therefore requires solving
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an optimization (minimization) problem. These problems have many appli-
cations in scientific areas such as heat transfer, geophysics, electromagnetic,
astronomy, electrocardiography, elastic waves and acoustics. Some important
references on inverse problems can be found in [1, 2, 3, 4, 5]. Theory and appli-
cation of ill-posed problems and their solutions can be found in the book edited
by Bakushinsky and Goncharsky [6].

More mathematically oriented references on inverse problems include [7, 8,
9, 10, 11, 12, 13]. Tomography, particularly in medical imaging and seismology,
is a very large field. Some general references on electrocardiography, are [14,
15, 16, 19, 20].

The recent development of theory, methods, and applications of one-dimensional
inverse problems of dynamic elasticity can be found in [21, 22, 23, 24].

In [25] a good overview of many computational aspects of the subject, with
applications and related areas that provide an entry point to some of the current
research in this area. There is a wide research literature in the area of parameter
estimation in [23].

Wave propagation problems in environmental applications such as seismic
analysis, acoustic and electromagnetic scattering are described in [21] for both
forward and inverse problems.

In our thermodynamics model we will study the problem of determining two
thermal coefficients from a mixed set of data using a hybrid method. This is
an inverse problem where the experimental data need to coincide the numerical
solution of the model problem.

2. The model problem

Our model problem consists on a solid right circular cylinder of radius R and
height L sitting on a table (see Fig. 1). The steady state temperature is denoted
by u(r, z) where we have introduced cylindrical coordinates. The bottom of the
cylinder is at z = 0, and the top at z = L. In what follows, there will be no
angular dependence. The origin for r is at the center of the cylinder. A the
top, a small circle of the cylinder of radius ρ centred at r = 0 is indicated, the
significance of which will soon be clear. The bottom is assumed to be insulated
so there,

∂u

∂z
(r, 0) = 0.

We take the ambient temperature to be zero. k will denote the thermal
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Figure 1: Geometry of the model problem.

conductivity and σ the heat transfer coefficient. We consider the model problem

∆u(r, z) =
∂2u

∂r2
(r, z) +

1

r

∂u

∂r
(r, z) +

∂2u

∂z2
(r, z) = 0, (1)

0 < r < R, 0 < z < L,

∂u

∂z
(r, 0) = 0, 0 ≤ r ≤ R,

∂u

∂z
(R, z) = −γu(R, z), γ =

σ

k
, 0 ≤ z ≤ L, (2)

u(r, L) = f(r) =

{

S, 0 ≤ r < ρ
T, ρ ≤ r ≤ R

.

The problem is solved by means of the standard technique of separation of
variables:

u(r, z) = ϕ(r)ψ(z).

We find that ϕ(r) satisfies the equation

ϕ′′(r) +
1

r
ϕ′(r) + λ2ϕ(r) = 0, λ > 0, (3)

ϕ′(R) = −γϕ(R).

The solution of (3) is well known as

ϕ(r) = J0(λr),



130 A. Kharab, F. Howari

and λ is obtained by solving for µ

µJ1(µ) = γRJ0(µ).

Here J0 and J1 are Bessel functions. We find

0 < µ1 < µ2 < .... < µn < ..., , µn → ∞ as n→ ∞.

Now, λn = µn/R. Then

ϕn(r) = J0(λnr)

and
ψn(z) = cosh(λnz).

The solution is

u(r, z) =
∞
∑

n=1

αn J0(λnr) cosh(λnz). (4)

The αn are determined from the boundary conditions

u(r, L) = f(r)

and for that we make use of the orthogonality relations

∫ R

0
ϕm(r)ϕn(r)rdr =

{

0, m 6= n
R2

2 J
2
1 (λnR)

[

γ2

λ2
n

+ 1
]

, m = n
.

Let

υn =
R2

2
J2
1 (λnR)

[

γ2

λ2n
+ 1

]

.

Then

u(r, L) = f(r) =
∞
∑

n=1

αnϕn(r) cosh(λnL),

and

αnυn cosh(λnL) =

∫ R

0
f(r)ϕn(r)rdr.

So

αn =
1

υn cosh(λnL)

[

S

∫ ρ

0
J0(λnr)rdr + T

∫ R

ρ

J0(λnr)rdr

]

. (5)
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We now construct a problem that will illustrate the hybrid method. Choose
values for k, σ, S, T, all constants, positive, and take S > T. This allows us to
construct the solution u(r, z). Let

g(r) = kuz(r, L), 0 ≤ r ≤ ρ.

We assume at this point that u(r, z) is not known but that we have measured
values, say h1 = u(0, L/3) and h2 = u(0, 2L/3).

The values T, g(r), h1 and h2 are assumed known and we wish to determine
k and σ. The ambient temperature is zero.

The problem as it stands is not amenable to an eigenvalue and eigenfunction
approach because u(r, L) is not given for all r but instead a mixed set of data
is given at z = L. The first step is to solve for arbitrary k, σ Eqns. (1)-(2) to
get values of u(r, z) along z = L, that is u(r, L). We then use these values to
define g(r) and solve numerically the model problem

∆u(r, z) = 0 in 0 ≤ r < R, 0 < z < L, (6)

∂u

∂r
(R, z) = −γu(R, z), γ = σ/k, 0 ≤ z ≤ L,

uz(r, 0) = 0, 0 ≤ r ≤ R,

kuz(r, L) = g(r), 0 ≤ r < ρ,

u(r, L) = T , ρ ≤ r ≤ R, (7)

at the grid points. Let us call these values vij at z = L, viJ . This allows us to
define a function f(r) on z = L and compare u(0, L/3) with h1 and u(0, 2L/3)
with h2. The solution is done in an iteration process. We adjust the values for
k and σ and repeat the process until that the computed values u(0, L/3) and
u(0, 2L/3) coincide with the experimental values h1 and h2.

3. Numerical solution

To set up the finite difference method, we subdivide the interval [0, L] into m
intervals each of width l such that

zj = jl, j = 1, 2, ...,m − 1, l = L/m.

Let h be the radius-step size with ri = ih, i = 1, 2, ....., n, h = R/n.
The differential equation (1) is discretized at (ri, zj) using the central dif-

ference in the z and r-directions, giving

ui+1,j − 2ui,j + ui−1,j

h2
+

1

ih

ui+1,j − ui−1,j

2h
+
ui,j+1 − 2ui,j + ui,j−1

l2
= 0,

i = 1, 2, ..., n, j = 0, 1, ...,m.
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Rewrite to get

ui,j−1 + λ2ui−1,j(1−
1
2i)− 2ui,j(λ

2 + 1) + λ2ui+1,j(1 +
1
2i) + ui,j+1 = 0,

i = 1, 2, ..., n, j = 0, 1, ...,m,

where ui,j = u(ih, jl) and λ = l/h. This is a five-point difference formula.
For the boundary conditions at r = R, and z = 0, we have

z = 0, ui,1 = ui,−1,

ui,m+1 = ui,m +
1

k
g(ih), ih < ρ,

ui,m = T , ih > ρ,

un+1,j = un,j(1− γh),

u1,j = u0,j , r = 0.

4. Numerical results

In this section we will show some numerical results that determine the values
of k and σ and therefore u(x, t). For the infinite series in equations (4) we took
50 terms to guarantee the convergence of the series.

In this example we consider an unknown cylindrical metal material with
height L = 5 cm, radius R = 4 cm. We choose S = 100, and T = 80. The
results of the experiment are shown in Fig. 2 with the measured values of
h1 = u(0, L/3) = 49.013 and h2 = u(0, 2L/3) = 62.122 which was done at
Zayed University. We want to determine the values of k and σ of the sample.
First we choose arbitrary values for k = 4.0 and σ = 2.0 that is γ = 0.5 and use
4 to get the values of the temperature at u(r, L) which will be used to define
g(z). We then solve the model problem (6) numerically to obtain the values of
the temperature at u(0, L/3) and u(0, 2L/3).

We compare these values with the experimental values h1 and h2. We con-
tinue the iteration process by using the new value for σ obtained from the
condition

∂u

∂r
(R, z) = −γu(R, z), γ = σ/k, 0 ≤ z ≤ L,

until h1 and h2 coincide with u(0, L/3) and u(0, 2L/3). Table 1 shows the values
of γ obtained during the iteration process.
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Figure 2: Experimental results.

Iterations γ

Starting value 0.5

1 0.3380

2 0.2724

3 0.2529

Table 1

After 3 iterations we get convergence with γ = 0.2529, that gives k = 0.6
and σ = 2.370. These values are in good agreement with the actual parameters
of the sample. Fig. 3 shows the numerical and experimental results along r = 0.

Nomenclature

σ = Heat transfer coefficient (W-s/Kg-K).
k = Thermal conductivity (W/cm-K).

5. Conclusion

This paper deals with the determination of two thermal coefficients of a metallic
sample. Using a hybrid method and a set of experimental data, the parameters
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Figure 3: Experimental (series1) and numerical (series2) results of
u(x, t) at r = 0.

were obtained by solving an inverse problem. The present study shows that the
values of the thermal coefficients of the sample obtained from the numerical
results were in good agreement with experimental data. The model problem
was presented and numerical results were given.
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