CERTAIN SUBCLASSES OF BI-UNIVALENT
FUNCTIONS ASSOCIATED WITH HORADAM POLYNOMIALS
K. Dhanalakshmi1, D. Kavitha2, A. Anbukkarasi3 1K. Dhanalakshmi PG
and Research Department of Mathematics
Theivanai Ammal College for Women (Autonomous)
Villupuram 605602, Tamilnadu, INDIA
2 Department of Mathematics
Audisankara College of Engineering
and Technology (Autonomous)
Gudur-524101, Nellore District
Andra Pradesh, INDIA
3 A. Anbukkarasi Department of Mathematics
IFET College of Engineering (Autonomous Institution)
Villupuram 605 108, Tamilnadu, INDIA
In this present paper, our goal is to introduce two new subclasses of analytic bi-univalent functions defined by means of Horadam polynomials in the open unit disc U. Also we find initial estimates on Taylor-Maclaurin coefficients and provided the relevant Fekete-Szegö theorem using coefficient estimates for the defined new subclasses.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] D.A. Brannan, J. Clunie, Aspects of Contemporary Complex Analysis, Academic
Press, New York-London (1980).
[2] R.M. Ali, L.S. Keong, V. Ravichandran, Coefficient estimates for biunivalent
Ma-Minda starlike and convex functions, Appl. Math. Lett., 25,
No 3 (2012), 344-351.
[3] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, Studia
Univ. Babes, Bolyai Math., 31, No 2 (1986), 70-77.
[4] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenscafeten,
259, Spinger-Verlag, New York (1983).
[5] B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions,
Hacet. J. Math. Stat., 43, No 3 (2014), 383-389.
[6] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan
Amer. Math. J., 22, No 4 (2012), 15-26.
[7] A.F. Horadam and J.M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci
Quart., 23, No 1 (1985), 7-20.
[8] A.F. Horadam, Jacobsthal representation polynomials, The Fibonacci
Quart., 35, No 2 (1997), 137-148.
[9] T. Horzum and E.G. Kocer, On some properties of Horadam polynomials,
Int. Math. Forum, 4, No 25-28 (2009), 1243-1252.
[10] D. Kavitha, K. Dhanalakshmi and N. ArulMozhi, Coefficient estimates for
certain subclasses of analytic functions associated with Horadam polynomial,
Adv. Math. Sci. J., 9, No 12 (2020), 1-12.
[11] A. Kedzierawski, J. Waniurski, Bi-univalent polynomials of small degree,
Complex Variables Theory Appl., 10, No 2-3 (1988), 97-100.
[12] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer.
Math. Soc., 18 (1967), 63-68.
[13] A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Math.
Mag., No 7 (1999), 2-12.
[14] E. Netanyahu, The minimal distance of the image boundary from the origin
and the second coefficient of a univalent function in z < 1, Arch. Rational
Mech. Anal., No 32 (1969), 100-112.
[15] H.M Srivastava, S. Altınkaya and S. Yal¸cın, Certain subclasses of bi Univalent functions associated with the Horadam polynomials, Iran J. Sci.
Technol Trans. Sci., 43, No 4 (2019), 1873–1879.
[16] H.M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic
and bi-univalent functions, J. Egypt. Math. Soc., 23, No 2 (2015), 242-246.
[17] H.M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates
for general subclass of analytic and bi-univalent functions, Filomat, 27, No
5 (2013), 831-842.
[18] T.J. Suffridge, A coefficient problem for a class of univalent functions,
Michigan Math. J., 16, (1969), 33-42.
[19] D.L. Tan, Coefficient estimates for bi-univalent functions, An English summary
appears in: Chinese Ann. Math. Ser. B, 5, No 5 (1984), 559-568.
[20] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain
subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25,
No 6 (2012), 990-994.