CERTAIN SUBCLASSES OF BI-UNIVALENT
FUNCTIONS ASSOCIATED WITH HORADAM POLYNOMIALS

Abstract

In this present paper, our goal is to introduce two new subclasses of analytic bi-univalent functions defined by means of Horadam polynomials in the open unit disc U. Also we find initial estimates on Taylor-Maclaurin coefficients and provided the relevant Fekete-Szegö theorem using coefficient estimates for the defined new subclasses.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 1
Year: 2021

DOI: 10.12732/ijam.v34i1.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] D.A. Brannan, J. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, New York-London (1980).
  2. [2] R.M. Ali, L.S. Keong, V. Ravichandran, Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25, No 3 (2012), 344-351.
  3. [3] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes, Bolyai Math., 31, No 2 (1986), 70-77.
  4. [4] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenscafeten, 259, Spinger-Verlag, New York (1983).
  5. [5] B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43, No 3 (2014), 383-389.
  6. [6] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22, No 4 (2012), 15-26.
  7. [7] A.F. Horadam and J.M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart., 23, No 1 (1985), 7-20.
  8. [8] A.F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quart., 35, No 2 (1997), 137-148.
  9. [9] T. Horzum and E.G. Kocer, On some properties of Horadam polynomials, Int. Math. Forum, 4, No 25-28 (2009), 1243-1252.
  10. [10] D. Kavitha, K. Dhanalakshmi and N. ArulMozhi, Coefficient estimates for certain subclasses of analytic functions associated with Horadam polynomial, Adv. Math. Sci. J., 9, No 12 (2020), 1-12.
  11. [11] A. Kedzierawski, J. Waniurski, Bi-univalent polynomials of small degree, Complex Variables Theory Appl., 10, No 2-3 (1988), 97-100.
  12. [12] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68.
  13. [13] A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag., No 7 (1999), 2-12.
  14. [14] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1, Arch. Rational Mech. Anal., No 32 (1969), 100-112.
  15. [15] H.M Srivastava, S. Altınkaya and S. Yal¸cın, Certain subclasses of bi Univalent functions associated with the Horadam polynomials, Iran J. Sci. Technol Trans. Sci., 43, No 4 (2019), 1873–1879.
  16. [16] H.M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egypt. Math. Soc., 23, No 2 (2015), 242-246.
  17. [17] H.M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for general subclass of analytic and bi-univalent functions, Filomat, 27, No 5 (2013), 831-842.
  18. [18] T.J. Suffridge, A coefficient problem for a class of univalent functions, Michigan Math. J., 16, (1969), 33-42.
  19. [19] D.L. Tan, Coefficient estimates for bi-univalent functions, An English summary appears in: Chinese Ann. Math. Ser. B, 5, No 5 (1984), 559-568.
  20. [20] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25, No 6 (2012), 990-994.