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Abstract: The stability of oscillations of an ideal conducting shell with a
longitudinal current containing the flow of an ideal incompressible fluid with
respect to radial disturbance of the shape of the shell is studied.
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1. Introduction

Recently, there has been an intensive implementation of the ideas and methods
of magnetism into applied industries - in the energetics, metallurgy, technology,
etc. In the first place we are talking about the use of strong magnetic fields
and materials with different conductivities. In theoretical and practical studies
related to these areas, an important role is played by taking into account the
properties of actual media, such as finite and infinite conductivity, supercon-
ductivity, internal friction, relaxation, etc. They often lead to new results that
are of both theoretical and practical interest.

Various problems of the theory of magnetism lead to the study of systems
of quasilinear non-stationary equations. This problem, in particular, is related
to the phenomenon of superconductivity of type II. In 1962, C. P. Bean [1]
proposed a mathematical model to describe this phenomenon. We should note
that by its very statement, the Bean model implies a solution with a compact
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support, as well as the study of local and global properties of the solution of
the corresponding mathematical problem. Some of these questions were studied
and solved in [2] , [5] , [6] , [12] – [14] .

In this paper, we touch upon the second equally important aspect of this
problem - stability, namely, the question of stability of oscillations of a magne-
toelastic system. Earlier, the problem of the stability of a tangential disconti-
nuity formed by two elastic superconducting half-spaces in a magnetic field was
considered [10], [11]. Now a conducting shell in a magnetic field is used as a
magnetoelastic system.

2. Preliminary Notes

The equations of magnetoelastic oscillations of the shell represent a set of equa-
tions of electrodynamics and exact or approximate equations of shell mechanics.
The relationship between the equations of mechanics and electrodynamics is due
to the Ampere force with which the magnetic field acts on the surface current.

At a disturbance of the shape of the shell, there appears a disturbance of
the magnetic field and hence the “magnetic” pressure on the surface of the
shell. Thus, the oscillations will be described by agreed equations in which this
change in the shape of the shell leads to a perturbation of the magnetic field of
the currents. Here we will consider thin cylindrical shells of an infinite length.

As it is known [4], [9] cylindrical shells can have a significant number of the
form of oscillations, which are determined by the number of nodal lines along
the generatrix of the cylinder. We confine ourselves to considering only radial
oscillations, that is, we will study such a change in the shape of the shell at
which its radius experiences disturbance of the form:

r = R+ ξ (ϕ, z, t) = R+ ξ0 exp (inϕ+ ikz − iωt) . (1)

Here, the axis of the shell coincides with the axis z of the cylindrical coordinate
system, the thickness of the shell is equal to h and its radius - R. The shell
material has density ρ, elastic modulus E and Poisson’s coefficient v. We will
consider the conductivity of the shell as equal to infinity, and the magnetic
permeability 1.

3. Main results

Consider the problem of the stability of oscillations of a current-carrying shell
containing an incompressible fluid flow [10], [11]. Let the radius of the shell
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experience small disturbance of the form (1). The fluid flow rate is equal V and
its density ρ0. Current by force I flowing along the shell in the direction of the
axisz.

The unperturbed field of shell has in this case only the azimuthal component
equal to

H0ϕ =
2I

cr
, r > R.

The disturbance of the shell leads to a disturbance of the magnetic field,
which can be written in the form:

H = H0 + h exp (−iωt) , h≪ H0.

To determine the disturbance h, we use the magnetostatic approximation
[9], [10]. Then we have

h = gradψ, divh = 0,
∆ψ = 0 at r > R.

The solution of the Laplace equation in the outer area has the form [7]:

ψ = αKn (kr) exp (ikz + inϕ) ,

where α is the constant determined from the boundary condition and Kn is
the modified Bessel function of the second kind. Thus, the components of the
perturbation h̄ are equal to:

hr = αkK ′
n (kr) exp (ikz + inϕ) ,

hϕ = α
in

r
Kn (kr) exp (ikz + inϕ) ,

hz = ikαKn (kr) exp (ikz + inϕ) .

The condition at the boundary with an ideal conductor requires the absence
of a normal component of the magnetic field [8], i.e.

n H̄ = 0 at r = R,

where n is the unit vector of the external normal to the perturbed surface of
shell. For a disturbance of the form (1), its components are equal to:

nr = 1, nϕ = −
inξ

R
, nz = −ikξ.
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Using the boundary conditions, we find

α = inH0ϕ
1

kK ′
n (kR)

·
ξ0

R
.

The magnetic pressure on the perturbed surface of the shell in this case is
determined by the formula

Pm = Pom

(

1− 2
ξ

R

(

1 + n2
Kn (kR)

kRK ′
n (kR)

))

, (2)

where Pom = 1
8π · H2

0ϕ is the magnetic pressure on the non-perturbed shell. If
the disturbance depends only on z, then

Pm = Pom

(

1− 2
ξ

R

)

. (3)

With a disturbance of the shape of the shell, which depends only on ϕ, the
solution of the Laplace equation in the area r > R is the function of

ψ = αr−n exp (inϕ) .

In this case, the pressure is equal to:

Pm = Pom

(

1 + 2
ξ

R
(n− 1)

)

. (4)

For simplicity, we consider the problem separately for perturbations of the
form exp (ikz) and exp (inϕ). In the first case, the equation for small radial
oscillations of the shell has the form ([4], [9])

ρh
∂2ξ

∂t2
+D

∂4ξ

∂z4
+

2vD

R2
·
∂2ξ

∂z2
+

12
(

1− v2
)

h2R2
Dξ = Pr − Pm,

where D = Eh2

R(1−v2) is the cylindrical rigidity, Pr and Pm is the hydrodynamic

and magnetic pressure on the surface of the shell.
To find the hydrodynamic pressure, we solve the corresponding boundary

value problem

∆P = 0 at r > R,

∂P

∂r
= −ρ0

(

∂

∂t
− V

∂

∂z

)2

ξ at r = R.

Hence we find that

Pr = ρ0
(ω − kV )2

k
·
I0 (kR)

I ′0 (kR)
ξ, (5)
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where I0 is the modified Bessel function of the first kind, [3]. Substituting the
expressions for the pressures (3) and (5) and taking into account that in the case
under consideration ξ ∼ exp (i (kz − ωt)), we obtain the dispersion equation of
the problem in the form:

ω2 − 2ω
kV

1 + ε
+
k2V 2

1 + ε
− Ω2 = 0, (6)

where the parameter ε is determined by the expression

ε = ρkhI ′0 (kR) ·
1

ρ0I0 (kR)

and

Ω2 =

(

kD

(

k4 −
2vk2

R2
+

12
(

1− v2
)

h2R2

)

− 2k
Pom

R

)

·
1

ρkh+ ρ0
I0(kR)
I′0(kR)

.

If the fluid is stationary, then equation (6) is simplified and its roots are
equal

ω =
√
Ω2 .

This shows that a sufficiently strong current can lead to instability of the os-
cillations of the type under consideration. This type of instability is of the same
nature as the instability of the “constriction” type in the ideally diamagnetic
direct pinch. The presence of a fluid flow changes the condition of instability.
Indeed, the roots of the dispersion equation in this case have the form

ω =
kV

1 + ε
±
√

Ω2 −
ε

(1 + ε)2
k2V 2 .

Therefore, instability can occur even in the case, where Ω2 > 0. Thus, the
longitudinal current and the flow fluid reduce the stability of the shell to the
considered form of disturbance. In the second case, for the disturbance

ξ = ξ0 exp (inϕ− iωt)

the equation of radial oscillations of the shell has the form [8], [9]

ρh
∂2ξ

∂t2
+
D

R4

∂4ξ

∂ϕ4
= Pr − Pm. (7)

To determine the hydrodynamic pressure, we solve the boundary value prob-
lem

∆P = 0 at r < R,
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∂P

∂r
= −ρ0

∂2ξ

∂t2
at r = R.

Hence we get that

Pr = ρ0
ω2

n
Rξ. (8)

The flow rate does not affect the disturbance of the type in question. In-
serting into the oscillation equation (7) the expressions for Pr from (4) and (8)
and taking into account that ξ ∼ exp (i (nϕ− ωt)), we obtain the dispersion
equation of the problem in the form

ω2 (nρh+ ρ0R) =
Dn5

R4
+ 2Pom

n (n− 1)

R
.

The roots of this equation are equal to:

ω =

√

Dn5 + 2PomR3n (n− 1)

R4 (nρh+ ρ0R)
.

This means that disturbance proportional to exp (inϕ) turns out to be stable.

4. Conclusion

It is shown that the disturbances of the form exp (iωt− inϕ) are always sta-
ble, and also define the conditions of instability for perturbations of the form
exp (iωt− ikz) .
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