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Abstract: In this paper, we employ the existing Hull-White short rate model
to derive an interest rate model driven by jump-diffusion process. Interest
rates experience both positive and negative jumps at some intervals as a result
of several factors which include natural disasters and presence of pandemics
such as corona virus. Much has been done in the modelling of interest rates
driven by Brownian motion process whereas little emphasis are laid on jumps
inherent in the interest rates. For efficient modelling and pricing of financial
derivatives, there is need to consider the aspect of jumps. Hence, this paper
bridges the gap by focusing on an improved model. Sensitivities namely ‘delta’,
‘vega’, ‘Theta’ and ‘Gamma’ of the new model are also derived using Malliavin
calculus.
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1. Introduction

Adequate modelling of interest rates is as important as what engine is to a
vehicle. Thus, the importance of accurate modelling of interest rates cannot be
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overemphasized. A lot of factors contribute to abnormal behaviour of interest
rates. These factors include government policies, attitude of investors, inflation,
natural disaster, etc. For example, the presence of corona virus which started
towards the end of year 2019 and entered the year 2020, affected the economy of
almost every country. This has contributed to the presence of negative jumps. A
good investor requires adequate understanding of movements of interest rates to
avoid unnecessary risks. In a quest of handling jumps in financial assets, jump-
diffusion processes were considered for better modelling. Thus, Merton [14]
derived an option pricing formula for underlying stock returns generated by
combination of continuous and jump processes. He suggested that equal anal-
ysis applied to the options can be extended to the valuation of corporate lia-
bilities. Kou [11] proposed a double exponential jump-diffusion model for the
pricing of options while in Kou [12], he discussed application of a jump-diffusion
model in valuing assets in financial engineering. Since then, different researchers
have worked on the applications of the jump-diffusion model in different fields.
Cartea and Figueroa [6], Meyer-Brandis and Tankov [15] and Kegnenlezom et
al. [10] applied the model in the evaluation of electricity prices. Berhane et
al. [3] used the model in the modelling of Ethiopian commodity prices to re-
duce risks caused by spikes in the prices. Carr and Mayo [5] discussed numerical
pricing of options with partial integral differential equation when density func-
tions of jump processes involve Gaussian, exponential and polynomials. Feng
and Linetsky [8] proposed a computational technique involving partial inte-
gro differential equation for valuing options involving jump-diffusion processes.
Bates [1] introduced a method for valuing stochastic volatility models driven by
the jump-diffusion processes. Su et al. [19] applied the jump-diffusion model in
the valuation of warrant bond. Ruf and Scherer [17] discussed valuing of a cor-
porate bond and how stochastic recovery rates are modelled using the model.
Novat et al. [16] applied Merton’s jump-diffusion model to stock market by
considering certain stocks of three East African countries. Salmi and Toiva-
nen [18] discussed an iterative procedure for valuing American options driven
by jump-diffusion processes, while Wang et al. [20] discussed valuation of vul-
nerable American options driven by such processes. Moreover, Jiahui et al. [9]
derived a closed form valuation formula for that of European option involving
credit and jump risks under inadequate information.

In this paper, we shall apply the jump-diffusion model in the modelling of
interest rates by considering Hull-White [13] short rate model. The choice of
the Hull-White model is because it has the property of mean-reversion of the
Ornstein-Uhlenbeck processes, and such property is common in interest rates.
The Hull-White [13] model was derived under a Brownian motion process, hence
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it does not capture possibility of jumps inherent in the interest rates. Malliavin
calculus will be applied in deriving expressions for greeks, namely delta, vega,
Theta and Gamma.

The rest of the paper is arranged as follows: in Section 2, we discuss the
important mathematical tools used in the work. We present and discuss our
result in Section 3. Conclusion is drawn in Section 4. In the following section,
we discuss the important mathematical tools needed for the success of the paper.

2. Mathematical Tools

In this section, we discuss Itô’s formula for jump-diffusion process given by
Cont and Tankov [7], and the Malliavin calculus (Bavouzet and Messaoud [2]).
The jump-diffusion process involves a compound Poisson process given by

Jt =

Nt∑

i=1

∆i,

where Nt is a Poisson process that counts the random number of jumps up to
time t.

Here ∆i = Λ(ti) − Λ(ti
−

) represents the jump size or amplitude, and the
jump sizes are independent and identically distributed. E[(·)], Wt and C1,2

denote expectation of (·), Wiener process and twice differentiable functions,
respectively.

2.1. Itô’s formula for jump-diffusion process

Let Λ be a diffusion process with jumps defined as

Λt = Λ0 +

∫ t

0
asds +

∫ t

0
σsdWs +

Nt∑

i=1

∆Λi,

where as and σs are non-anticipating processes with E[

∫ T

0
σ2
t dt] < ∞.

Then, for each C1,2 function f : [0, T ]×R → R, the process f(t,Λt) can be
written as

f(t,Λt) = f(0,Λ0) +

∫ t

0

[
∂f

∂s
(s,Λs) + as

∂f

∂∧(s,Λs)

]
ds

+
1

2

∫ t

0
σ2
s

∂2f

∂∧2
(s,Λs)ds +

∫ t

0

∂f

∂∧(s,Λs)dWs
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+
∑

{i≥1,Ti≤t}

[f(ΛTi
−

+∆Λi)− f(ΛTi
−

)].

2.2. The Hull-White [13] model

This is given by

dr(t) = (ρ(t)− η(t)r(t))dt + σ(t)dWt,

where ρ(t), η(t) and σ(t) are deterministic functions of time. It is one of the
short rate models with mean-reversion which is a common property of interest
rates, that is, interest rates tends to revert back to certain mean after a long
run. It has been shown in Brigo and Mercurio [4](pg. 73) that

r(t) = r(s)e−η(t−s) +

∫ t

s

e−η(t−u)ρ(u)du+ σ

∫ t

s

e−η(t−u)dW (u).

In the following section, we discuss Malliavin calculus stating some of its
lemmas and theorem (without proof) needed in this paper. The proof of the
lemmas and theorem can be seen in Bavouzet and Messaoud [2]. The notations
used are mainly from Bavouzet and Messaoud [2].

2.3. The Malliavin calculus

Given a probability space (Ω,F ,P) where Ω, F and P denote the sample space,
set of filtrations and probability measure. Let (Yn, n ∈ N) be a sequence of in-
dependent random variables having moments of any order where Yn has density

f̂ which is continuously differentiable on R such that ϕ(z) =
∂f̂

∂z
has at most a

polynomial growth. Let f : Rn → R be the space of functions that are k times
continuously differentiable (f ∈ Ck(Rn)) with f and its derivatives up to order
k having polynomial growth. Z denotes a Gaussian random variable.

Definition 1. A simple functional is a random variable F = f(Y1, ..., Yn),
where f : Rn → R represent specific measurable functions, for certain n ∈ N.
The set of simple functional f ∈ Ck(Rn) is represented as S(n,k).

Definition 2. A simple process of length n is a sequence of random
variables U = (Ui, i ≤ n) such that Ui = ui(Y1(w), ..., Yn(w)). The space of
simple processes of length n where ui ∈ Ck(Rn), i = 1, 2, ..., n is denoted by
P(n,k). U ∈ P(n,k) implies that Ui ∈ S(n,k) for i ∈ N.
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Definition 3. An operator D : S(n,1) → P(n,0) is called the Malliavin

derivative operator, if for F = f(Y1, ..., Yn), we have

Dif =
∂f

∂yi
(Y1(w), ..., Yn(w)), where DF := (DiF )i≤n ∈ P(n,0).

Definition 4. An operator δ : P(n,1) → S(n,0) is called the Skorohod

integral operator, if

δ(U) = −
n∑

i=1

(DiUi + ϕi(Z)Ui)

= −
n∑

i=1

(
∂ui

∂yi
(Y1, ..., Yn) + ϕi(Z)ui(Y1, ..., Yn)

)
,

where

ϕi(z) =
∂ ln f̂i(z)

∂z
if f̂i(z) > 0

0 if f̂i(z) = 0.

Definition 5. Let L : S(n,2) → S(n,0). The operator L is called an
Ornstein-Uhlenbeck operator given by

LF = −
n∑

i=1

[DiDiF + ϕiDiF ], i = 1, 2, ..., n.

Lemma 6. (i) For F ∈ S(n,1) and U ∈ P(n,1), we have

E[〈DF,U〉] = E[Fδ(u)],

where 〈·, ·〉 represents the scalar product in R
n.

(ii) If Φ ∈ C1
b (R

d) where b denotes bounded derivatives then Φ(F ) ∈ S(n,1)

and the Malliavin derivative satisfies

DΦ(F ) =
d∑

k=1

∂kΦ(F )DF k.

(iii) If F,G ∈ S(n,2) then

L[F,G] = FLG+GLF − 2〈DF,DG〉,

where L denotes Ornstein-Uhlenbeck operator.
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Definition 7. Let F = (F 1, ..., F d) and F i ∈ Sd
(n,1), then the Malliavin

covariance matrix is defined as

̟
i,j
F := 〈DF i,DF j〉, where F i = f i(Y1, ..., Yn).

Theorem 8. (cf. Bavouzet-Morel and Messaoud [2] ‘The Malliavin inte-
gration by parts formula’) For F = (F 1, ..., F d) ∈ Sd

(n,2) and G ∈ S(n,1), let the

matrix ̟F be invertible written as ̟−1
F . Let E[(det̟−1

F )4] < ∞, then for each
smooth function Φ : Rd → R, i = 1, 2, ..., d,

E[∂iΦ(F )G] = E[Φ(F )H i(F,G)],

where

H i(F,G) =

d∑

j=1

G̟−1
ji (F )LF j −̟−1

ji (F )〈DF j ,DG〉 −G〈DF j ,D̟−1
ji (F )〉

is known as the Malliavin weight.

3. Results and Discussion

In our results, we consider a modified Hull-White model for the interest rate
r(t) = rt given by

dr(t) = (ρ− ηr(t))dt+ σdWt + dJt,

where ρ, η and σ are constants denoting long-term mean rate, speed of reversion
of mean and volatility of the interest rate, respectively. Wt represents Wiener
process while Jt is a compound Poisson process given by Jt =

∑Nt

i=1 ∆i where
∆i and Nt denote jump size at time ti and number of jumps, respectively. Ti

represent the times that the jumps occurred.

3.1. Interest rate dynamics driven by pure jump and jump-diffusion
processes

Theorem 9. Let r(t) = rt be an interest rate driven by pure jump process
where ρ, σ and η represent its long-run mean rate, volatility and mean-reversion
rate, respectively. Then, its dynamics defined as

dr(t) = (ρ− ηr(t))dt+ σdJt
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satisfies

r(t) = r0e
−ηt +

ρ

η
(1− e−ηt) + σ

n∑

i=1

∆rie
−η(t−Ti). (1)

Proof. Using Itô’s formula,

f(t, r) = rte
ηt = r0 +

∫ t

0

∂f

∂s
ds +

∫ t

0
(ρ− ηrs)

∂f

∂x
ds

+ σ
∑

i≥1,Ti≤t

[f(s, rs
−

+∆rs)− f(s, rs
−

)].

Thus,

rte
ηt = r0 +

∫ t

0
ηrse

ηsds+

∫ t

0
(ρ− ηrs)e

ηsds

+ σ
∑

i≥1,Ti≤t

[rs
−

eηs− +∆rse
ηs − rs

−

eηs− ]

= r0 +
ρ

η
(eηt − 1) + σ

∑

i≥1,Ti≤t

∆rie
ηTi

= r0 +
ρ

η
(eηt − 1) + σ

Nt∑

i=1

∆rie
ηTi .

Hence,

rt = r0e
−ηt +

ρ

η
(1− e−ηt) + σ

Nt∑

i=1

∆rie
−η(t−Ti)

which can be written as Eq. (1)

Theorem 10. Let an interest rate dynamics driven by pure jump-diffusion
process be given by

dr(t) = (ρ(t)− ηr(t))dt+ σ(t)dWt + dJt,

where ρ(t), η(t) and σ(t) are deterministic functions of time. Then

r(t) = r0e
−ηt +

∫ t

0
e−η(t−s)ρ(s)ds +

∫ t

0
σse

−η(t−s)dWs +

n∑

i=1

∆rie
−η(t−Ti). (2)
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Proof. Let f(t, rt) = reηt. Then,
∂f

∂t
= ηreηt,

∂f

∂r
= eηt,

∂2f

∂t2
= 0.

By Itô’s formula,

rte
ηt = r0 +

∫ t

0

[
rse

ηsη + eηs(ρ(s)− ηrs)
]
ds+

∫ t

0
σse

ηsdWs

+
∑

i≥1,Ti≤t

[
rse

ηs +∆rie
ηTi − rse

ηs
]

= r0 +

∫ t

0
eηsρ(s)ds+

∫ t

0
σse

ηsdWs +

Nt∑

i=1

∆rie
ηTi .

With Nt = n 6= 0, we have

rt = r0e
−ηt +

∫ t

0
eη(s−t)ρ(s)ds+

∫ t

0
σse

η(s−t)dWs +
n∑

i=1

∆rie
η(Ti−t).

Remark 11. To compute European option price with maturity T on the
interest rate, from Eq. (2) we obtain

rT = r0e
−ηT +

∫ T

0
e−η(T−s)ρ(s)ds +

∫ T

0
σse

−η(T−s)dWs

+

n∑

i=1

∆rie
−η(T−Ti).

Theorem 12. The interest rate dynamics driven by jump-diffusion process
given by

dr(t) = (ρ− ηr(t))dt+ σdWt + dJt,

where ρ, η and σ are constants, satisfy

r(t) = r0e
−ηt +

ρ

η
(1− e−ηt) + σ

m∑

j=1

e−η(t−tj )(W (tj)−W (tj−1))

+
n∑

i=1

∆rie
−η(t−Ti).

(3)

Proof. From the condition given in the theorem,

drt = (ρ− ηrt)dt+ σdWt + dJt.



JUMP-DIFFUSION PROCESS OF INTEREST... 191

Applying Itô’s formula,

rt = r0e
−ηt + e−ηtρ

∫ t

0
eηsds+

∫ t

0
σe−η(t−s)dWs +

∑

i≥1,Ti≤t

∆rie
−η(t−Ti)

= r0e
−ηt +

ρ

η
e−ηt(eηt − 1) + σ

∫ t

0
e−η(t−s)dWs +

Nt∑

i=1

∆rie
−η(t−Ti)

= r0e
−ηt +

ρ

η
(1− e−ηt) + σ

m∑

j=1

e−η(t−tj )(W (tj)−W (tj−1))

+

n∑

i=1

∆rie
−η(t−Ti).

Remark 13. To compute European option price with maturity T on the
interest rate, we obtain from Eq. (3) that

rT = r0e
−ηT +

ρ

η
(1− e−ηT ) + σ

m∑

j=1

e−η(T−tj )(W (tj)−W (tj−1))

+

n∑

i=1

∆rie
−η(T−Ti).

(4)

We proceed to compute the sensitivities delta ‘△’, vega ‘V’ and ‘Theta’ of
an European call option on the interest rate. We denote E[·] as the expected
pay-off function and Φ(rt) = max(0, rt −K) where K is the strike price. Also,
W (t) =

√
tZ.

3.2. Sensitivity analysis of the interest rates

To compute the greeks, namely ‘delta’, ‘vega’, ‘Theta’ and ‘Gamma’ of the inter-

est rate, F = rT ∈ S(n,2) andG =
∂rT

∂α
∈ S(n,1) are functions of (t1, ..., tn, Z1, ..., Zn,∆1, ...,∆

where α denotes parameter of the interest rate whose effect is to be determined.

Lemma 14. Let an interest rate be given by Eq. (4). Then the following
holds:

(i) Its Malliavin derivative gives
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DFW = σ

m∑

j=1

√
tj − tj−1e

−η(T−tj ), (5)

DF∆i =

n∑

i=1

e−η(T−Ti). (6)

(ii) The Ornstein-Uhlenbeck operator on the interest rate gives

LrT = LrWT + Lr∆i

T

= σ

m∑

j=1

√
tj − tj−1e

−η(T−tj )Zj +

n∑

i=1

∆ie
−η(T−Ti),

where

LrWT = σ

m∑

j=1

√
tj − tj−1e

−η(T−tj )Zj (7)

and

Lr∆i

T =
n∑

i=1

∆ie
−η(T−Ti). (8)

Proof. (i) Eq.(5) and Eq.(6) are obtained when the Malliavin derivative
operator acts on the interest rate given by Eq. (4).

(ii) The Ornstein-Uhlenbeck operator is given by

LrT = −[DDrT + ϕDrT ] = −
n∑

i=1

[DiDirT + ϕiDirT ],

where ϕi =
∂ ln f(z)

∂z
=

∂

∂z
ln

(
1√
2π

e−
1

2
z2
)

= −z.

Thus, Eq. (7) and Eq. (8) are obtained as

LrWT = σ

m∑

j=1

√
tj − tj−1e

−η(T−tj )Zj

and

Lr∆i

T =

n∑

i=1

∆ie
−η(T−Ti), respectively.
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Hence, the Ornstein-Uhlenbeck operator on rT gives

LrT = LrWT + Lr∆i

T

=

m∑

j=1

σ
√

tj − tj−1e
−η(T−tj )Zj +

n∑

i=1

∆ie
−η(T−Ti).

Lemma 15. Let rt be given by Eq. (4), then its inverse Malliavin covari-
ance matrix satisfies the following:

(̟−1
j )W =

m∑

j=1

e2η(T−tj )

σ2(tj − tj−1)
, (9)

(̟−1
i )∆i =

n∑

i=1

e2η(T−Ti). (10)

Furthermore, the Malliavin derivative of the inverse Malliavin covariance Matrix
is given by

D(̟−1)W = 0 = D(̟−1)∆i . (11)

Proof. The Malliavin covariance matrix of rT is given by

̟ = 〈DFW ,DFW 〉+ 〈DF∆i ,DF∆i〉 = ̟W +̟∆i .

The Malliavin covariance matrix gives

̟W = 〈DFW ,DFW 〉 = σ2
m∑

j=1

(tj − tj−1)e
−2η(T−tj )

and

̟∆ir = 〈DF∆i ,DF∆i〉 =
n∑

i=1

e−2η(T−Ti).

Whence,

(̟−1)W =
1

σ2

m∑

j=1

e2η(T−tj )

(tj − tj−1)
, (̟−1)∆i =

n∑

i=1

e2η(T−Ti).

Hence, the Malliavin derivative on the inverse covariance matrix gives

D(̟−1)W = D(̟−1)∆i = 0.
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3.2.1. Derivation of delta

The greek ‘delta’ measures the sensitivity of the interest rate to change in its
initial value. The value of an European call option price on rT is given by

V = E[Φ(rT )] = E[max(rT −K, 0)],

where r0 is the initial initial interest rate, Φ(rT ) = max(rT −K, 0) is payoff of
the European call option price, T is the maturity date and K is the call option
price.

The greek ‘delta △’ is given by

△ =
∂

∂r0

(
E[Φ(rT )]

)
= E

[
Φ′(rT )

∂rT

∂r0

]
= E

[
Φ(rT )H

(
rT ,

∂rT

∂r0

)]
,

where H

(
rT ,

∂rT

∂r0

)
is for the Malliavin weight.

From rT given by Eq. (4), we obtain

G =
∂rT

∂r0
= e−ηT , (12)

DG = 0. (13)

We proceed to derive the Malliavin weight for the greek ‘delta’.

Theorem 16. Let rT be an interest rate given by Eq. (4). Then, the
Malliavin weight for the greek ‘delta’ of the interest rate is given by

H

(
rT ,

∂rT

∂r0

)
=

m∑

j=1

e−ηT

σ
√
tj − tj−1

eη(T−tj )Zj + e−ηT

n∑

i=1

eη(T−Ti)∆i.

Proof. The Malliavin weight H(F,G) satisfies

H(F,G) = G̟−1(F )LF −̟−1(F )〈DF,DG〉 −G〈DF,D̟−1(F )〉,

where G =
∂rT

∂r0
and F = rT .

Since D̟−1(F ) = D̟−1(rT ) = 0 in Eq. (11) and DG = 0 in Eq. (13), it
follows that

H(F,G) = G̟−1(F )LF.

From Equations (12), (9) and (7), we obtain
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H(F,G)W = e−ηT · 1

σ2

m∑

j=1

e2η(T−tj )

(tj − tj−1)
· σ

m∑

j=1

√
tj − tj−1e

−η(T−tj )Zj

=

m∑

j=1

e−ηT

σ
√
tj − tj−1

eη(T−tj )Zj .

From Equations (12), (10) and (8), we obtain

H(F,G)∆i = e−ηT ·
n∑

i=1

e2η(T−Ti) ·∆ie
−η(T−Ti) = e−ηT

n∑

i=1

eη(T−Ti)∆i.

Therefore,

H(F,G) = H(F,G)W +H(F,G)∆i

=

m∑

j=1

e−ηT

σ
√
tj − tj−1

eη(T−tj )Zj + e−ηT

n∑

i=1

eη(T−Ti)∆i.

3.2.2. Derivation of vega

The greek ‘vega V’ measures the sensitivity of the interest rate to changes in
its volatility. It is given by

V =
∂

∂σ

(
E[Φ(rT )]

)
= E

[
Φ(rT )H

(
rT ,

∂rT

∂σ

)]
,

where H

(
rT ,

∂rT

∂σ

)
is the Malliavin weight for vega.

From Eq. (4),

Gσ =
∂G

∂σ
=

m∑

j=1

e−η(T−tj )
√
tj − tj−1Zj , (14)

DGσ =
m∑

j=1

e−η(T−tj )
√

tj − tj−1. (15)

We derive the Malliavin weight for the greek ‘vega’.
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Theorem 17. Let rT be an interest rate given by Eq.(4). Then, the
Malliavin weight for the greek ‘vega’ is given by

H(F,Gσ) =

m∑

j=1

1

σ
(Z2

j − 1) +

m∑

j=1

e−η(T−tj )
√

tj − tj−1Zj

n∑

i=1

eη(T−Ti)∆i

− σ

n∑

i=1

e2η(T−Ti)
m∑

j=1

e−2η(T−tj )(tj − tj−1).

Proof. The Malliavin weight is given by

H(F,Gσ) = Gσ̟
−1(F )LF −̟−1(F )〈DF,DGσ〉 −Gσ〈DF,D̟−1(F )〉,

where Gσ =
∂rT

∂σ
and F = rT .

Since D̟−1(F ) = D̟−1(rT ) = 0 in Eq. (11), it follows that

H(F,Gσ) = Gσ̟
−1(F )LF −̟−1(F )〈DF,DGσ〉.

From Equations (14), (10), (7), (5) and (15), we have

H(F,Gσ)
W =

m∑

j=1

e−η(T−tj )
√

tj − tj−1Zj ·
1

σ2

e2η(T−tj )

(tj − tj−1)

· σ
√

tj − tj−1e
−η(T−tj )Zj − 1

σ2

m∑

j=1

e2η(T−tj )

tj − tj−1

· σe−η(T−tj )
√

tj − tj−1 · e−η(T−tj )
√

tj − tj−1

=

m∑

j=1

Z2
j

σ
− 1

σ
.

Furthermore, from Equations (14), (10), (8), (6) and (15), we have

H(F,Gσ)
∆i =

m∑

j=1

e−η(T−tj )
√

tj − tj−1Zj ·
n∑

i=1

e2η(T−Ti) ·∆ie
−η(T−Ti)

−
n∑

i=1

e2η(T−Ti) · σ
m∑

j=1

e−η(T−tj )
√

tj − tj−1
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·
m∑

j=1

e−η(T−tj )
√

tj − tj−1

=
m∑

j=1

e−η(T−tj )
√

tj − tj−1Zj

n∑

i=1

eη(T−Ti)∆i

− σ

n∑

i=1

e2η(T−Ti)
m∑

j=1

e−2η(T−tj )(tj − tj−1).

Therefore,

H(F,Gσ) = H(F,Gσ)
W +H(F,Gσ)

∆i

=

m∑

j=1

Z2
j

σ
− 1

σ
+

m∑

j=1

e−η(T−tj )
√

tj − tj−1Zj

n∑

i=1

eη(T−Ti)∆i

− σ

n∑

i=1

e2η(T−Ti)
m∑

j=1

e−2η(T−tj )(tj − tj−1).

3.2.3. Derivation of Theta

The greek ‘Theta’ measures how the option price on the interest rate depreciates
as time to maturity draws near. It is given by

Theta = Θ =
∂

∂T
E[Φ(rT )] = E

[
Φ(rT )H

(
rT ,

∂rT

∂T

)]
,

where H(rT , GT ) = H

(
rT ,

∂rT

∂T

)
is the Malliavin weight for Theta.

We proceed to derive the Malliavin weight for Theta. From Eq. (4),

GT = (ρ− ηr0)− ση

m∑

j=1

e−η(T−tj )
√
tj − tj−1Zj − η

n∑

i=1

∆ie
−η(T−Ti). (16)

The Malliavin derivative on BT gives

DGW
T = −ησ

m∑

j=1

e−η(T−tj )
√

tj − tj−1, (17)

DG∆i

T = −η

n∑

i=1

e−η(T−Ti). (18)
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Theorem 18. Let the interest rate rT be given by Eq.(4), then its Malli-
avin weight with respect to the greek ‘Theta’ gives

H(F,GT ) = H

(
rT ,

∂rT

∂T

)
=

((
e−ηT

σ
(ρ− ηr0)− η

[ m∑

j=1

e−η(T−tj )

·
√

tj − tj−1Zj −
1

σ

n∑

i=1

∆ie
−η(T−Ti)

]) m∑

j=1

1√
tj − tj−1

eη(T−tj )Zj

)

+

(
(ρ− ηr0)e

−ηT − ση

m∑

j=1

e−η(T−tj )
√

tj − tj−1Zj

− η

n∑

i=1

∆ie
−η(T−Ti)

)
·

n∑

i=1

∆ie
η(T−Ti) + 2η.

Proof. H(F,GT ) = H(rT , GT )

= GT̟
−1(F )LF −̟−1(F )〈DF,DGT 〉 −GT 〈DF,D̟−1(F )〉

= H

(
rT ,

∂rT

∂T

)
= HW (F,GT ) +H∆i(F,GT ).

Recall from Eq. (11) that D̟−1(F ) = 0, thus

H(F,GT ) = GT̟
−1(F )LF −̟−1(F )〈DF,DGT 〉

= HW (F,GT ) +H∆i(F,GT ).

From Equations (16), (10), (7), (5) and (17), we get

HW (F,GT ) =

((
e−ηT

σ
(ρ− ηr0)− η

[ m∑

j=1

e−η(T−tj )
√

tj − tj−1Zj

− 1

σ

n∑

i=1

∆ie
−η(T−Ti)

]) m∑

j=1

1√
tj − tj−1

eη(T−tj )Zj

)
+ η.

Moreover, from Equations (16), (10), (9), (6) and (18), we get

H∆i(F,GT ) =

(
(ρ− ηr0)e

−ηT − ση

m∑

j=1

e−η(T−tj )
√

tj − tj−1Zj

− η

n∑

i=1

∆ie
−η(T−Ti)

)
·

n∑

i=1

∆ie
η(T−Ti) + η.

Adding HW (F,GT ) and H∆i(F,GT ) gives the Malliavin weight.
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3.2.4. Derivation of Gamma

The greek ‘Gamma Γ’ measures how sensitive the option price on the interest
rate is to change in ‘delta’. It is given by

Γ =
∂2V

∂r20
=

∂

∂r0
E

[
Φ(rT )H

(
rT ,

∂rT

∂r0

)]

= E

[
Φ′(rT )

∂rT

∂r0
H

(
rT ,

∂rT

∂r0

)]
+ E

[
Φ(rT )

∂

∂r0
H

(
rT ,

∂rT

∂r0

)]

= E

[
Φ(rT )H

(
rT ,

∂rT

∂r0
H

(
rT ,

∂rT

∂r0

))]

+E

[
Φ(rT )

∂

∂r0
H

(
rT ,

∂rT

∂r0

)]
.

But

E

[
Φ(rT )

∂

∂r0
H

(
rT ,

∂rT

∂r0

)]
= 0.

Hence,

Γ = E

[
Φ(rT )H

(
rT ,

∂rT

∂r0
H

(
rT ,

∂rT

∂r0

))]
= E[Φ(rT )H(rT , GΓ)],

where

GΓ =
∂rT

∂r0
H

(
rT ,

∂rT

∂r0

)
.

We proceed to obtain the Malliavin weight for the greek ‘Gamma’.
From equation (4) and Malliavin weight for the greek ‘delta’, we obtain

GW
Γ =

e−2ηT

σ

m∑

j=1

eη(T−tj )Zj√
tj − tj−1

. (19)

G∆i

Γ = e−2ηT
n∑

i=1

eη(T−Ti)∆i. (20)

DGW
Γ =

e−2ηT

σ

m∑

j=1

eη(T−tj )

√
tj − tj−1

. (21)

DG∆i

Γ = e−2ηT
n∑

i=1

eη(T−Ti). (22)
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Theorem 19. Let the interest rate rT be given by Eq.(4), then its Malli-
avin weight with respect to the greek ‘Gamma’ is given by

H

(
rT ,

∂rT

∂r0
H

(
rT ,

∂rT

∂r0

))
= H(F,GΓ) =

e−2ηT

σ

(
1

σ

m∑

j=1

e2η(T−tj )

·
(

Z2
j

tj − tj−1
− 1

))
+ e−2ηT

( n∑

i=1

e2η(T−Ti)(∆2
i − 1)

)
.

Proof. H(F,GΓ)

= GΓ̟
−1(F )LF −̟−1(F )〈DF,DGΓ〉 −GΓ〈DF,D̟−1(F )〉

= HW (F,GΓ) +H∆i(F,GΓ).

Recall from Eq. (10) that D̟−1(F ) = 0, thus

H(F,GΓ) = GΓ̟
−1(F )LF −̟−1(F )〈DF,DGΓ〉

= HW (F,GΓ) +H∆i(F,GΓ).

From Equations (19), (9), (7), (5) and (21), we get

HW (F,GΓ) =
m∑

j=1

e−2ηT

σ
√
tj − tj−1

eη(T−tj )Zj ·
e2η(T−tj )

σ2(tj − tj−1)

· σ
m∑

j=1

√
tj − tj−1e

−η(T−tj )Zj −
m∑

j=1

e2η(T−tj )

σ2(tj − tj−1)

· σ
m∑

j=1

√
tj − tj−1e

−η(T−tj ) · e−2ηT

σ
√
tj − tj−1

m∑

j=1

eη(T−tj )

=
e−2ηT

σ2

m∑

j=1

e2η(T−tj )Z2
j

tj − tj−1
−

m∑

j=1

e−2ηT

σ
· e2η(T−tj ).

Hence,

HW (F,GΓ) =
e−2ηT

σ

(
1

σ

m∑

j=1

e2η(T−tj )

(
Z2
j

tj − tj−1
− 1

))
. (23)

Moreover, from Equations (20), (10), (8), (6) and (22), we get

H∆i(F,GΓ) = e−2ηT
n∑

i=1

eη(T−Ti)∆i · e2η(T−Ti) ·∆ie
−η(T−Ti)
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−
n∑

i=1

e2η(T−Ti) · e−η(T−Ti) · e−2ηT eη(T−Ti)

= e−2ηT
n∑

i=1

e2η(T−Ti)∆2
i − e−2ηT

n∑

i=1

e2η(T−Ti).

Thus,

H∆i(F,GΓ) = e−2ηT

( n∑

i=1

e2η(T−Ti)(∆2
i − 1)

)
. (24)

Adding Equations (23) and (24) gives the result.

4. Conclusion

In the paper, we have been able to derive a modified Hull-White model that
takes care of pure jump and jump-diffusion processes of interest rates. Using
Malliavin calculus for jump-diffusion processes as given by Bavouzet-Morel and
Messaoud [2], we have derived the greeks ‘delta’, ‘vega’, ‘Theta’ and ‘Gamma’
which measures sensitivity of the interest rate to change in its initial value,
the sensitivity of the interest rate with respect to change in its volatility, the
sensitivity of the interest rate with respect to maturity time and the sensitivity
of the interest rate with respect to change in ‘delta’, respectively. This is very
useful in the process of reducing risk in a given portfolio. We recommend that
this work can be extended to multivariate random variables.
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