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Abstract: The polynomially deformed Lie algebra, lq : [K0,K+]q = G (K+),
[K−,K0]q = G (K−) , [K+,K−]q = P (K0), is introduced as a generalized model
of the coupled quantized oscillators model, where G and P are real polynomial
functions, subject to the physical properties: K0 is a real diagonal operator,
and K− = K

†
+. Matrix representations are discussed and conditions are given
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1. Introduction

Modeling of nonlinear quantum optical physics phenomena (like, multimode ra-
diation fields on multiphoton processes mediums, many -body physics models
[1], [2], investigating the statistics of particles that interpolate between Bosons
and Fermions, [13]-[17], or study of q-deformed oscillators [12], [16]) is expressed
as Hamiltonians whose non-linearities are of higher order than the quadratic
forms. In turn, such highly nonlinear Hamiltonians are associated with non-
linear q-deformed Lie algebra or polynomially deformed Lie algebras SUpd (2),
[3].

On the other hand, direct methods to solve for the evolution parameters or
Schrödinger’s wave equations of such nonlinear Hamiltonian models are tedious
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in many cases . However, the use of Lie algebraic approach (e.g., [3] and refer-
ences therein) in such nonlinear models has some advantages as compared with
direct methods, (similar to the familiar Lie algebraic decomposition method for
bilinear Hamiltonians, [21], [22]).

For such useful Lie algebraic decomposition methods, one requires faithful
matrix representation for the generators of such deformed Lie algebra.

The intention of this paper is to consider the q-deformed algebra in a more
general form that considers both types of deformation, namely, q-deformed Lie
brackets and polynomially deformed Lie algebras, and investigate the faithful
matrix representations of the generators of such deformed Lie algebras. Repre-
sentations of degree 2 are the least possible degrees.

2. Preliminaries

Definition 1. Let X and Y be n×nmatrices. The q-deformed Lie bracket
of X and Y is defined as

[X,Y ]q = XY − qY X for q ∈ R.

For q = 0, it is the ordinary matrix multiplication of X and Y. Thus,
throughout this paper, q is supposed to be a nonzero real number. Whereas,
for q = 1, it is the ordinary Lie bracket. Thus, we always, write [X,Y ]1 as
[X,Y ]. In [11], e.g., q was considered as 0 ≤ q ≤ 1 for the model of Fermion
Oscillators.

Faithful matrix representations of least degree of the Lie algebra l, were
considered in [4]-[10], namely,

l : [K0,K±] = ±rK± and [K+,K−] = P (K0) , (1)

where P is a real polynomial function, subject to the physical properties,
namely, K0 is a real diagonal operator and K− = K

†
+ († is for Hermitian con-

jugation), with K+ +K− is a real operator, in order to satisfy the Hermiticity
of the Hamiltonian of the coupled quantized optical atoms, namely, [10]

H = ωK0 + λ (t) (K+ +K−) . (2)

In this paper, we discuss, the faithful matrix representations for lq, where

lq: [K0,K+]q = G (K+) , (3)
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[K−,K0]q = G (K−) , (4)

[K+,K−]q = P (K0) , (5)

subject to the physical properties, namely, K− = K
†
+ and K0 is a real diagonal

operator with K+ + K− is a real operator, in order to satisfy the Hermiticity
of the Hamiltonian (2), where P and are real polynomials.

In (3)-(5), lq is introduced as a more generalization of the models considered
in [4]-[10]. It is the q-deformed and polynomially deformed model of l in (1).
As on setting q = 1, then l1 becomes the Lie algebra l, where G (x) = rx.
So, for q = 1 and with particular choices of G and P, one gets the models in
[4]-[9] and their special models, e.g., in [27], [28] and also, obtains their matrix
representations.

3. Basic properties of the q-deformed Lie Bracket for quantized

Hamiltonians

Some basic properties of the q-deformed Lie bracket are listed in the following
theorem,whose proof can be driven immediately from the definition.

Theorem 2. Let X,Y and Z be n × n matrices, q ∈ R and α, β ∈ C.
Then:

1. tr
(

[X,Y ]q

)

= tr
(

[Y,X]q

)

.

2. [X,Y ]†q =
[

Y †,X†]
q
.

3. [X,Y ]q = q [X,Y ] + (1− q)XY.

4. [αA, βB]q = αβ [A,B]q .

5. [X,Y ]q = [X,Y ] + (1− q)Y X.

6. [X,X]q = (1− q)X2.

7. [X,Y + Z]q = [X,Y ]q + [X,Z]q .

8. [Y,X]q = [X,Y ]q − (1 + q) [X,Y ] .

9. [X + Y,Z]q = [X,Z]q + [Y,Z]q .

10. [X,Y ]q = (1 + q) [X,Y ] + [Y,X]q .
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11. [X,Y ]q = (1 + q) [X,Y ] + [Y,X]q .

12. [X,Y ]q = −q [Y,X]q +
(

1− q2
)

XY.

13. [Y,X]q = −q [X,Y ]q +
(

1− q2
)

Y X.

14. [X,Y ]q − [Y,X]q = (1 + q) [X,Y ] .

15.
[

[X,Y ]q , Z
]

q
= XY Z − qY XZ − qZXY − q2ZY X.

16.
[

X, [Y,Z]q

]

q
= XY Z − qY ZX − qXZY + q2ZYX.

17.
[

[X,Y ]q , Z
]

q
−

[

X, [Y,Z]q

]

q
= q [X,Z]Y + qY [Z,X] .

18.
[

X, [Y,Z]q

]

−
[

[X,Y ]q , Z
]

q
= qY [X,Z] + q [Z,X] Y.

19.
[

X, [Y,Z]q

]

q
+
[

Y, [Z,X]q

]

q
+

[

Z, [X,Y ]q

]

q

= (1− q) [(XY Z + Y ZX + ZXY )

−q (XZY + Y XZ + ZYX)].

Proposition 3. The polynomial function G (x) of x satisfies

G (K−) = [K0,K−]q − (1 + q) [K0,K−]

= −q [K0,K−]q +
(

1− q2
)

K−K0.

Proof. From (3), by using parts 2 and 10, of Theorem 2, we have

G (K−) = (G (K+))
† = [K0,K+]

†
q =

[

K
†
+†,K

†
0

]

q
= [K−,K0]q

= [K0,K−]q + (1 + q) [K−,K0]

and from part (12) of Theorem 2, we have

[K−,K0]q = −q [K0,K−]q +
(

1− q2
)

K−K0.
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Theorem 4. The defining relations of lq can be either:

[K0,K+]q = G (K+) , and [K+,K−]q = P (K0) , (6)

or

[K−,K0]q = G (K−) , and [K+,K−]q = P (K0) ,

where P and G are real polynomials, subject to the physical properties, namely,
K− = K

†
+ and K0 is a real diagonal operator with K+ +K− is a real operator.

4. Faithful representations of lq

Unless otherwise stated, A,B and C are representation matrices for K+,K−
and K0, respectively. All representations into consideration are supposed to
satisfy the physical properties, namely, B = A† and C is a real diagonal matrix
with A+B is real a matrix. Also, P (x) and G (x) are polynomial functions in
R [x].

The following lemma shows that, interchanging the position of two diagonal
elements of C, leads to a conjugate representation of lq satisfying the physical
requirements.

Lemma 5. Let δ = (uv) be a permutation in the symmetric group Sn.
When applying δ to the rows as well as to the columns of the n × n matrices
A,B and C, we obtain a conjugate matrix representation of lq satisfying the
physical requirements of degree n.

Proof. Let E be the elementary matrix obtained by applying δ to the rows
of In. Since E = E−1 = ET = E†, then A

′

= E−1AE,B′ = E−1BE and
C ′ = E−1CE are representation matrices for K+,K− and K0, respectively.
For, [C ′, A′]q =

(

E−1CE
)

(E−1

AE)− q
(

E−1AE
)

(E−1CE) = E−1 (CA− qAC)E = E−1 [C,A]q E

= E−1G (A)E = G
(

E−1AE
)

= G (A′). Similarly, [A′, B′]q = P (C ′). The
physical properties of lq are also satisfied in respective with the matrices A′, B′

and C ′.

So, we consider C consists of k diagonal blocks of scalar matrices corre-
sponding to different scalars. That is C = diag(δ1In1 , δ2In2 , ...,
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δkInk
), for different real numbers δ1, δ2, ..., δk with

k
∑

i=1
ni = n, where n is the

degree of the representation.
The following equations (7)-(9) are necessary relations forA,B and C, which

are obtained from (3) and (5), respectively. For i, j = 1, 2, ..., n, we have

(G (A))ij = aij (cii − qcjj) (7)

and
∑n

t=1
(aitājt − qatj āti) = for i 6= j (8)

∑n

t=1

(

|ait|2 − q |ati|2
)

= P (cii) . (9)

5. Faithful matrix representations of lq of degree 2, where F and G

are real linear polynomials

Since lq is generated by 3 generators, namely, K± andK0, then the least possible
degree of a faithful matrix representation is 2. In such a case, A,B = A† and C =
diag (c1, c2) with c1, c2 ∈ R, are linearly independent 2 × 2 matrices satisfying
the physical conditions. It should be noticed that when a contradiction occurs
in a representation of degree 2, when c1 6= c2, a contradiction is going to occur
in representations of higher degrees between two different diagonal blocks of the
representation matrix of K0. Also, if a contradiction may occur when c1 = c2,
then it will occur in representations of higher degrees in the same diagonal block
of the representation matrix of K0. This is why representations of degree 2 are
of particular importance. The q-deformed Lie algebra (3)-(5) is a generalization
to the Lie algebras in [4] and [9] and many other models. This is why the case
where F and G are linear polynomials is practically important.

Unless otherwise stated we consider, from now on, P (x) = µx + ν and
G (x) = αx+ β for real α, β, µ, ν and

A =

[

a b

c d

]

, B = A† and C = diag (c1, c2) , (10)

where c1, c2 ∈ R. Thus, we have from (5) and (3), respectively, that [A,B]q =
µC + νI

=





(1− q) |a|2 + |b|2 − |c|2 q
(

ac̄+ bd̄
)

− (bā+ dc̄) q

(

ac̄+ bd̄
)

− (bā+ dc̄) q |c|2 − |b|2 q + (1− q) |d|2



 (11) and
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[C,A]q =





(1− q) ac1 b (c1 − qc2)

c (c2 − qc1) (1− q) dc2



 = αA+ βI. (12)

In the following theorem we state some basic and necessary properties of
the representation matrices, enough to find and decide whether the Lie algebra
lq has a faithful representation of degree 2.

Theorem 6. Consider the representation matrices A,B = A† and C =
diag (c1, c2) of K+,K− and K0, respectively as in (10), and P (C) = µC + νI

and G (A) = αA+ βI. Then

1. a and d are real and b 6= c̄.

2. α = (c1 − qc2) , if b 6= 0 or α = (c2 − qc1) if c 6= 0.

If bc 6= 0, then either q = −1 or C is a scalar matrix.

3. β = [(1− q) c1 − α] a = [(1− q) c2 − α] d

= 1
2 [(1− q) (ac1 + dc2)− α (a+ d)] .

4. µc1 + ν = (1− q) a2 +
(

|b|2 − q |c|2
)

and

µc2 + ν = (1− q) d2 +
(

|c|2 − q |b|2
)

.

5. µ (c1 − c2) = (1− q)
(

a2 − d2
)

+ (1 + q)
(

|b|2 − |c|2
)

.

6. b (d− qa) + c̄ (a− qd) = 0.

Moreover, if A,B and C are linearly independent, then the representation
is faithful.

Proof. On comparing the diagonal elements on both sides of (12), we get,
a [(1− q) c1 − α] = β = d [(1− q) c2 − α]. This shows that, a and d must be
real numbers. If b = c̄, then A is Hermitian matrix and B = A and the
representation is not faithful. That proves parts 1 and 3, which is completed by
adding the first two equations of it. Similarly, on comparing the non-diagonal
elements of on both sides of (12) and solving for α we prove part 2. If bc 6= 0,
then (c1 − c2) (q + 1) = 0. Thus, c1 = c2 or q = −1. Parts 4 - 6 are by comparing
elements of matrices in both sides of the matrices P (C) in (11).
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Theorem 7. If αβ 6= 0 and bc 6= 0, then lq has no faithful real represen-
tation of degree 2.

Proof. The proof depends on Theorem 6. So, from part 3 of Theorem 6 as
bc 6= 0, then either q = −1 or c1 = c2 = r ∈ R.

If q = −1, then from part 2, α = c1 + c2 and from part 3, we have,
(a+ d) (c1 − c2) = 0.

Case 1: a = −d. Thus, from part 5, µ (c1 − c2) = 0. If µ = 0, then P (C) =
νI, which leads to c1 = c2.

Case 2: c1 = c2 = r. Thus, from part 2, as q = −1, then α = 2r, and hence,
from part 3, we get β = 0, which is a contradiction.

On the other hand if q 6= −1 and C = rI, a scalar matrix, then from
part 2, α = (1− q) r and from part 3 β = [(1− q) r − α] a = 0, contradicting
β 6= 0.

It should be pointed out that if b = c = 0, then the representation is not
faithful. Also, as results of parts 2 and 3 of Theorem 6, if C = rI, a scalar
matrix and b 6= 0 and c = 0, then β = 0. Representation matrices obtained,
when b = 0 and c 6= 0 are similar to those when b 6= 0 and c = 0, by changing
B and A.

So, we always discuss representations with c = 0 and b 6= 0.
In the following theorem we introduce conditions and a procedure to calcu-

late A and C to guarantee a faithful matrix representations for lq.

Theorem 8. Let q2 6= 1 and α 6= 0. A necessary and sufficient condition
for lq to have a faithful representation with c = 0 and ab 6= 0, is that a is a
real root of equation (13), satisfying that |b|2 > 0, where the elements of these
representation matrices are given by the following sequence of equations:

1. a is calculated as a real root of the following equation satisfying that
|b|2 > 0,

2. a3
(

−q2 + q3 + q4 − q5
)

+ a
(

qν − q3ν + qαµ+ q2αµ
)

+βµ
(

1 + q2
)

= 0, (13)

3. |b|2 = a3(−q+2q2−2q3+2q4−q5)+2a(qαµ+qν−q2ν)+βµ(1+q)

aq(q−1)2
, (14)

4. d = aq,

5. c1 =
β+aα
a(1−q) and c2 =

β+αaq
aq(1−q) .
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Proof. This proof is directly driven from Theorem 6. So, from part 6,
d = aq. And from part 3, c2 = β+αaq

aq(1−q) , and substitution in part 3, we get c1 =
β+aα
a(1−q) . And from part 4, we get, by addition, (1− q)

(

1 + q2
)

a2+(1− q) |b|2 =
µ
(

β+aα
a(1−q) +

β+αaq
aq(1−q)

)

+ 2ν. Thus,

(1− q) |b|2 = µ

(

β + aα

a (1− q)
+

β + αaq

aq (1− q)

)

+ 2ν − (1− q)
(

1 + q2
)

a2.

Therefore, |b|2 =
µ
(

β+aα

a(1−q)
+ β+αaq

aq(1−q)

)

+2ν−(1−q)(1+q2)a2

1−q , which must be positive and

after some reductions, we prove (14). From part 4 µ
(

β+aα
a(1−q)

)

+ν = (1− q) a2+

|b|2 . Thus, µ
(

β+aα
a(1−q)

)

+ ν − (1− q) a2 − |b|2 = 0. On using (14), we have

µ

(

β + aα

a (1− q)

)

+ ν − (1− q) a2

− a3
(

−q + 2q2 − 2q3 + 2q4 − q5
)

+ 2a
(

qαµ + qν − q2ν
)

+ βµ (1 + q)

aq (q − 1)2
= 0.

Therefore,
(βµ−a3q2+a3q3+a3q4−a3q5+aqν−aq3ν+q2βµ+aqαµ+aq2αµ)

aq(q−1)2
= 0.Which yields

to βµ−a3q2+a3q3+a3q4−a3q5+aqν−aq3ν+q2βµ+aqαµ+aq2αµ = 0, and so
is (13). Therefore, lq has a faithful representation if and only if, a is calculated
as a real root of equation (13) satisfying equation (14), with |b|2 > 0.

The following examples are to illustrate the above procedure.

Example 9. Given that q = 1
2 , α = 1, β = −31

40 , µ = 3, and ν = 2.

Substitute in (13), we have, a3−32a+31 = 0, then (a− 1) (a2+a−31) = 0.
The roots of this equation are: 1, 52

√
5 − 1

2 and −5
2

√
5 − 1

2 . But |b|2 is only
positive for a = 1, thus a = 1. And since from (14) and assuming that the

representation is real, we have b2 = 57
20 . So, take b = ±

√

57
20 , c = 0, d = 1

2 ,

c1 =
9
20 and c2 = −11

10 .

Example 10. Given that q = 2, α = 2, β = 2, µ = 3, ν = −1.

We have from (13), the equation 2a3−7a−5 = 0 has roots: 1+
√
11

2 , 1−
√
11

2 and

−1. But |b|2 < 0 for 1+
√
11

2 and 1−
√
11

2 , rejected. So, a = −1. Thus, d = −2. And
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from (14), we have |b|2 = 0 and c1 = 0, c2 = −1. Thus, A = B = diag (−1,−2)
and C = diag (0,−1). Which gives a representation that is not faithful.

6. G (x) is a polynomial of zero absolute term

Practically, as in [10], a particular interest is given for representations where
A is a nilpotent matrix or a triangular matrix of zero diagonal elements. This
is when β = 0 as in the following theorem, where G is considered as a linear
polynomial.

Theorem 11. Let q 6= −1 and G (x) = αx, where α 6= 0. Then the
representation of lq is conjugate to a representation where A is n×n real upper
(or lower) triangular matrix with zero diagonal entries. Furthermore, if A+B

is real matrix then the representation is real.

Proof. From (3), (4), we have for i, j = 1, ..., n,

αaij =
∑n

t=1
(δitcitatj − qaitδtjctj) ,

i.e.,
aij (cii − qcjj − α) = 0,

and
aji (cjj − qcii − α) = 0.

Suppose, aijaji 6= 0 for i 6= j, we have

cii − qcjj = α, (15)

cjj − qcii = α. (16)

By subtraction in (15), (16), we get (1 + q) (cii − cjj) = 0. Since q 6= −1, then
for two different diagonal blocks in C, where, cii 6= cjj,we have that aij and
aji cannot both be nonzero. Thus, one can arrange the matrix C, which is
equivalent to getting a conjugate representation, in order to obtain A as an
upper (or lower) triangular matrix.

Now, consider representation of degree 2, where A,B and C are as in (10).
If β = 0, c = 0 and b 6= 0, then from parts 2 and 3 of Theorem 6, we get
aq (c2 − c1) = 0, and d (c2 − c1) = 0. Then, a = 0 and d = 0, when C is not a
scalar matrix. And we get, A as a nilpotent matrix of degree of nilpotency 2 and
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G (0) = 0. This allows to consider G of a degree greater than 1. In the following
theorem, the necessary and sufficient conditions are exhibited to have faithful
representation for lq, and formulae are given to calculate the representation
matrices, even when P (x) is not linear and G (x) = αx +

∑

i≥2 αix
i and A as

a nilpotent matrix.

Theorem 12. If G (A) = αA +
∑

i≥2 αiA
i, where the matrices A =

[

0 b

0 0

]

, B = A† and C = diag (c1, c2) are representation matrices of K+,K−

and K0, respectively, then lq has a faithful representation if and only if there
exists a real numbers c1 such that P (c1) > 0. In this case, b = ±

√

P (c1) and

c2 =
c1 − α

q
.

Proof. Since b 6= 0, then from part 1 of Theorem 6, c2 =
c1 − α

q
. From

(11), as a = c = d = 0, we have P (c1) =
(

[A,B]q

)

11
= |b|2 > 0, for a faithful

representation. Thus, b =
√

P (c1).

Actually, From (11), tr
(

[A,B]q

)

= P (c1) + P (c2) = − |b|2 (q − 1) =

−P (c1) (q − 1) . Therefore,

P (c2) + qP (c1) = 0. (17)

Example 13. Let q = −1, P (x) = x2 − 2x − 3 and G (x) = 2x + 11x4.
On choosing, c1 = 4, since P (4) = 5 > 0. Then c2 = 4−2

−1 = −2. Then A =
[

0
√
5

0 0

]

, B = A†, and C = diag (4,−2) are the representation matrices of

l−1 : [K0,K+]−1 = 2K+ + 11K4
+, and [K+,K−]−1 = K2

0 − 2K0 − 3K0
0 .

While on choosing, c1 = 5, since P (5) = 12 > 0. Then c2 = 5−2
−1 = −3 and

P (c2) = 12. Then A =

[

0
√
12

0 0

]

, B = A†, and C = diag (4,−2) are another

representation matrices of l−1.

Example 14. If q = 1
3 , P (x) = 2x2 − 3x − 11

4 and G (x) = 3x4 − 5x3 +
3x2 − 5

3x. Choose, c1 = −1, since P (−1) = 9
4 > 0. Then c2 = 2. Then A =

[

0 3
2

0 0

]

, B = A† and C = diag (−1, 2) are representation matrices of a faithful

representation of l1/3 : [K0,K+]1/3 = G (K+) , and [K+,K−]1/3 = P (K0) .
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Example 15. If q = 1, P (x) = −x2 + 2x and G (x) = x2. Choose, c1 = 1

since P (1) = 1 > 0. Then c2 = 1−0
2 = 1

2 . Then A =

[

0 1
0 0

]

, B = A†, C =

diag
(

1, 12
)

.

7. Generalized coupling quantized oscillators model

We conclude this paper by introducing a generalized model for the coupling
oscillators model. and considering its faithful representations of least degree of
the q-deformed Lie algebra lq, which is of a practically important case. This
case in a generalization of the q-deformed slpd(2,R), [26]. Also, in [9], it was
considered that q = 1, while G (K+) = αK+. While it was considered in [5],
[7], that q = 1, G (K0) = αK+ and P (K0) = µK0.

Theorem 16. The q-deformed lie algebra generated by K+, K− = K
†
+,

and real diagonal operator K0, satisfying

lq: [K0,K+]q = αK+,

[K−,K0]q = αK−,

[K+,K−]q = µK0, where αµ > 0,

and K+ +K− is real operator, has real faithful representations of degree 2 as
least degree, whose representation matrices A,B and C for K+,K− and K0,

respectively, where,

1. A =

[

0
√

αµ
q2+1

0 0

]

, B = A
†
+ and C =

[

α
q2+1 0

0 − αq
q2+1

]

,

2. A =

[

0 −
√

αµ
q2+1

0 0

]

, B = A
†
+ and C =

[

α
q2+1

0

0 − αq
q2+1

]

,

3. A =

[

0 0
√

αµ
q2+1 0

]

, B = A
†
+ and C =

[

− αq
q2+1

0

0 α
q2+1

]

, and

4. A =

[

0 0

−
√

αµ
q2+1

0

]

, B = A
†
+ and C =

[

− αq
q2+1

0

0 α
q2+1

]

.
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Proof. Since P (c1) = µc1 = |b|2 and P (c2) = µc2 = µ
(

c1−α
q

)

, from Theo-

rem 10. Using (17), we have µ
(

c1−α
q

)

+q (µc1) = 0. Then µ
[

c1
(

q2 + 1
)

− α
]

=

0. Thus we have, c1 =
α

q2+1
and hence, c2 = − αq

q2+1
and also, |b|2 = αµ

q2+1
.

8. Summary

The q-deformed Lie algebra lq, is a generalization of deformed Lie algebras
for quantized Hamiltonians. It was shown that lq has two types of faithful
matrix representations. If the absolute term of the polynomial G (K+) is zero,
then the matrices representing K+ and K− are nilpotent matrices of degree
2 as least degree. The formulae to compute the representation matrices are
given together with the conditions to guarantee that these matrices satisfy the
physical properties and the representation is faithful. If the absolute term of
G (K+) is not zero, then the representation matrix of K+ is a triangular matrix.
The conditions and formulae are given to evaluate the faithful representations
for linear polynomials P (K0) and G (K+). So,

(1) If G (K+) = αK+ + β, β 6= 0, then lq, has faithful representation of
degree 2 as least degree, if and only if the upper triangular matrix A = [aij ]
representing K+, is such that: a11 is a real root of equation (13), satisfying that
|b|2 is positive form (14), where q 6= 1.

(2) If G (K+) = αK+ +
∑

ℓ>1

αℓK
ℓ
+ then the representation matrix of K+

is nilpotent matrices if and only if α = c1 − qc2 for some c1, c2 ∈ R such that
P (c1) > 0.

(3) The q-deformed Lie algebra lq, was introduced as a generalized coupling
oscillators model, that is when P (K0) = µK0 and G (K+) = αK+. It was found
that lq has faithful representation if and only if αµ > 0.
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