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Abstract: We use a recent approach to establish the existence and uniqueness
results of Caputo fractional Volterra Fredholm integro-differential equation. We
derive some sufficient conditions for the existence of solutions of fractional in-
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1. Introduction

In this work, we study the existence and uniqueness of solution by using some
fixed point theorems of Krasnoselskii and Banach, then we apply the modified
Adomian decomposition method (MADM) for the following Caputo fractional
Volterra Fredholm Integro-Differential Equation (Caputo fractional VFIDE)
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{

CD
ρ

0+x(t) = g(t) + χ1x(t) + χ2x(t), t ∈ I = [0, 1],

x(0) = x0 + h(x),
(1)

where 0 < ρ < 1, CDρ

0+
is fractional derivative of order ρ in the Caputo sense,

g : I → R, h : C(I,R) → R, K1, K2 : I × I → R are continuous functions and
F1, F2 : R → R, i = 1, 2 are Lipschitz continuous functions. For short, we set

χ1x(t) :=

∫ t

0
K1(t, ξ)F1(x(ξ))dξ

and

χ2x(t) :=

∫ 1

0
K2(t, ξ)F2(x(ξ))dξ.

In recent years, the fractional integrodifferential equation emerges in a lot
of phenomena of different fields of science and engineering, [9, 22, 21, 24].

Some results on the existence of solutions of fractional integrodifferential
equations have been studied by many authors by employing the fixed point tech-
niques. For recent papers, see [1, 2, 3, 4, 5, 6, 31, 11, 14, 16, 20, 10, 29, 30, 25, 32].
Furthermore, much researches on the approximate solution of this kind of
equations have occurred through the method of Adomian decomposition in-
troduced by George Adomian [7] and other numerical methods for more details
see [8, 19, 15, 18, 34] . The method of Adomian decomposition has the fea-
ture of style and easiness of use. The solution is provided as a series in which
every expression can be easily calculated by means of Adomian polynomials
appropriated to nonlinear terms see [7, 12, 13, 17, 26, 27].

Wazwaz in [33] presented the method of modified Adomian decomposition
(MADM) that contains decomposing the 1st term of the series into 2nd terms,
one remains in the 1st term while the other is assigned to define the 2nd term
of series. The main aim of this method is to reduce the number of operations
used and quicken the convergence towards the exact solution of the proposed
problem. For instance on the application of the MADM, we refer to [23].

In this article, we use a recent approach to establish the existence and
uniqueness results of Caputo fractional VFIDE (1). We derive some sufficient
conditions for the existence of solutions of fractional integrodifferential equa-
tions with nonlocal conditions. the MADM is applied to obtain the approximate
solution of Moreover, the Krasnoselskii’s and Banach’s fixed point theorems are
employed to analyze our results.

The paper is organized as follows. In Section 2, we give some basic results
related the hypothesis and several lemmas needed throughout this work. In
Section 3, we prove the existence and uniqueness of solutions to the porposed
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problem by means of fixed point theorems of Krasnoselskii and Banach. In
section 4, we discuss the modified Adomian decomposition method and establish
the convergence of the series built by the MADM to the exact solution of the
Caputo fractional VFIDE. Finally, we give an example to illustrate our results.

2. Preliminaries

In this section, we need the following basic definitions and Lemmas used through-
out this paper. For more details, see [24].

Definition 1. Let ρ > 0, and ω ∈ L1([0, T ],R). The Riemann-Liouville
fractional integral of order ρ is defined by

I
ρ

0+
ω(t) =

{

1
Γ(ρ)

∫ t

0 (t− ξ)ρ−1ω(ξ)dξ, ρ > 0

ω(t), ρ = 0
,

where Γ is the Euler’s Gamma function satisfies

Γ(ρ) =

∫ ∞

0
tρ−1e−tdt, and

Γ(ρ)Γ(β)

Γ(ρ+ β)
=

∫ 1

0
(1− t)ρ−1tβ−1dt.

Moreover, The operator Iρ
0+

is bounded on C([0, T ],R), i.e., for a positive con-
stant κ

∥

∥I
ρ

0+
ω
∥

∥

∞
≤ κ ‖ω‖∞ , for all ω ∈ C([0, T ],R).

Definition 2. Let ρ > 0, ω ∈ ACn([0, T ],R). The Caputo fractional
derivative of order ρ is defined by

CD
ρ

0+
ω(t) = D

ρ

0+

[

ω(t)−
n−1
∑

k=0

ω(k)(0)

k!
tk

]

t ∈ [0, T ], (2)

where n = [ρ] + 1, [ρ] is the integer part of ρ and D
ρ

0+
is the fractional

derivative of order ρ in the Riemann-Liouville sense defined by

D
ρ

0+
ω(t) =

(

d

dt

)n

I
n−ρ

0+
ω(t)

=

(

d

dt

)n 1

Γ(n− ρ)

∫ t

0
(t− ξ)n−ρ−1ω(ξ)dξ.
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Lemma 1. If ρ, β > 0, then

I
ρ

0+
tβ−1 =

Γ(β)

Γ(ρ+ β)
tρ+β−1. (3)

Lemma 2. Let ω ∈ ACn(I,R), then the Caputo fractional derivative of
order ρ > 0

I
ρ

0+
CD

ρ

0+
ω(t) = ω(t)−

n−1
∑

k=0

ω(k)(0)

k!
tk, (4)

where n = [ρ] + 1. In a special case, if 0 < ρ < 1, then Iρ
0+

CD
ρ

0+
ω(t) = ω(t)−

ω(0). Furthermore, if ω is a continuous on I, we have CD
ρ

0+
I
ρ

0+
f(t) = f(t).

Theorem 3. ([28]) (Banach fixed point theorem) Let (U, d) be a Banach
space with T : U → U is a contraction mapping. Then mapping T has a fixed
point in U .

Theorem 4. ([28]) (Krasnoselskii fixed point theorem) Let U be a Banach
space, let S be a nonempty bounded closed convex subset of U and let T1, T2
be mapping from S into U such that T1x + T2v ∈ S for any x, v ∈ S. If T1 is
contraction and T2 is completely continuous, then the equation T1z + T2z = z

has a solution on S.

3. Existence result via Krasnoselkii’s fixed point theorem

In this part, we study existence of solution of Caputo fractional VFIDE (1) by
using Krasnoselkii’s fixed point theorem.

First we make the following assumptions.

(H1) Let F1(x(t)), F2(x(t)) can be considered as continuous nonlinearity terms
and there exist constants LF1

(> 0) and LF1
(> 0) such that

|Fi(x1(t))− Fi(x2(t))| ≤ LFi
|x1 − x2| , i = 1, 2, ∀x1, x2 ∈ R.

(H2) The kernels K1(t, ξ) and K1(t, ξ) are continuous on I× I, and there exist
two positive constants K∗

1 and K∗
2 in I × I

such that

K∗
i = sup

t∈I

∫ t

0
|Ki(t, ξ)| dξ <∞, i = 1, 2.
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(H3) g : I → R is continuous on I.

(H4) h : C(I,R) → R is continuous on C(I) and there exist constant 0 < Lh <

1 such that

|h(x1(t))− h(x2(t))| ≤ Lh |x1 − x2| , ∀x1, x2 ∈ C(I,R), t ∈ I.

The following lemma yields the equivalence between the problem (1) and
the integral equation. The proof for this lemma is neglected because it is similar
to some classical proofs in the literature.

Lemma 3. The function x ∈ C(I,R) be a solution of the Caputo fractional
VFIDE (1) if and only if x is a solution of the integral equation

x(t) = x0 + h(x) +
1

Γ(ρ)

∫ t

0
(t− s)ρ−1g(s)ds

+
1

Γ(ρ)

∫ t

0
(t− s)ρ−1

{
∫ s

0
K1(s, τ)F1(x(τ))dτ

+

∫ 1

0
K2(s, τ)F2(x(τ))dτ

}

ds.

Our first result is concerned with existence based on Theorem 4.

Theorem 5. Suppose (H1)− (H4) hold. If

∆1 :=

(

Lh +

∑2
i=1 LFi

K∗
i

Γ(ρ+ 1)

)

< 1, (5)

then the Caputo fractional VFIDE (1) has at least one solution on I.

Proof. Let C(I,R) be the space of the continuous functions x on I with the
usual norm defined by

‖x‖∞ = sup
t∈I

|x(t)|

Consider the ball

Bγ = {x ∈ C(I,R) : ‖x‖∞ ≤ γ} ⊂ C(I,R). (6)

Clearly, Bγ is nonempty convex closed subset of C(I,R). Choose γ such that
γ ≥ ∆2

1−∆1
, where ∆1 < 1,
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∆2 := µ0 +
µg +

∑2
i=1 µFi

K∗
i

Γ(ρ+ 1)
, (7)

µg := supt∈[0,1] |g(t)| , µ0 := |x0| + µh, µh = |h(0)| , µF1
:= |F1(0)| and µF2

:=
|F2(0)| .

In view of Lemma 3, the equivalent fractional integral equation to Caputo
fractional VFIDE (1) can be written as operator equation as follows

x = Px+Qx, x ∈ Bγ ⊂ C(I,R), (8)

where P and Q are two operators defined on Bγ by

(Px)(t) =
1

Γ(ρ)

∫ t

0
(t− s)ρ−1

(

∫ s

0
K1(s, τ)F1(x(τ))dτ

+

∫ 1

0
K2(s, τ)F2(x(τ))dτ

)

ds,

and

(Qx)(t) = x0 + h(x) +
1

Γ(ρ)

∫ t

0
(t− s)ρ−1g(s)ds.

Now, we obtain the fixed point of the operator equation (8) by using the con-
ditions of Theorem 6 as in the following steps:

Step 1: In this step, we show that, Px+Qv ∈ Bγ for each x, v ∈ Bγ .
By (H1) and for any x, v ∈ Bγ , we have

|Fi(x(t))| ≤ |Fi(x(t)) − Fi(0)| + |Fi(0)|
≤ LFi

‖x‖∞ + |Fi(0)|
≤ LFi

γ + µFi
, for all i = 1, 2,

and

|h(v(t))| ≤ |h(v(t)) − h(0)| + |h(0)|
≤ Lh ‖v‖∞ + |h(0)|
≤ Lhγ + µh.

Let x, v ∈ Bγ . Then

|(Px)(t) + (Qv)(t)|

≤ 1

Γ(ρ)

∫ t

0
(t− s)ρ−1

(

∫ s

0
|K1(s, τ)| |F1(x(τ))| dτ
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+

∫ 1

0
|K2(s, τ)| |F2(x(τ))| dτ

)

ds

+ |x0|+ |h(v)| + 1

Γ(ρ)

∫ t

0
(t− s)ρ−1 |g(s)| ds

≤ µ0 + Lhγ +
µg +

∑2
i=1 (LFi

γ + µFi
)K∗

i

Γ(ρ+ 1)
tρ,

which implies

‖Px+Qv‖∞

≤ µ0 +
µg +

∑2
i=1 µFi

K∗
i

Γ(ρ+ 1)
+

(

Lh +

∑2
i=1 LFi

K∗
i

Γ(ρ+ 1)

)

γ

≤ ∆2 +∆1γ ≤ γ.

Consequently,

Px+Qv ∈ Bγ .

Step 2: In this step, we show that Q is contraction on Bγ .

Let x, x∗ ∈ Bγ . It follows from (H4) that

‖Qx−Qx∗‖∞ = sup
t∈I

|Qx(t)−Qx(t)| = sup
t∈I

|h(x(t))− h(x∗(t))|

≤ Lh ‖x− x∗‖∞ .

Since Lh < 1, Q is contraction mapping.

Step 3: In this step, we show that, P is completely continuous on Bγ .

First, we show that P is continuous. Let (xn) be a sequence such that
xn → x in C(I,R). Then for each xn, x ∈ C(I,R) and for any t ∈ I, we have

|(Pxn)(t)− (Px)(t)|

≤ 1

Γ(ρ)

∫ t

0
(t− s)ρ−1

(
∫ s

0
|K1(s, τ)| |F1(xn(τ))− F1(x(τ))| dτ

+

∫ 1

0
|K2(s, τ)| |F2(xn(τ)) − F2(x(τ))| dτ

)

ds

≤
∑2

i=1 LFi
K∗

i

Γ(ρ+ 1)
‖xn − x‖∞ .

Since xn → x as n→ ∞, ‖Pxn − Px‖∞ → 0, as n→ ∞. This proves that P is
continuous on C(I,R).
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Next, from Step 1, we observe that

|(Px)(t)|

≤ 1

Γ(ρ)

∫ t

0
(t− s)ρ−1

(

∫ s

0
|K1(s, τ)| |F1(x(τ))| dτ

+

∫ 1

0
|K2(s, τ)| |F2(x(τ))| dτ

)

ds

≤
∑2

i=1 (LFi
γ + µFi

)K∗
i

Γ(ρ+ 1)
tρ.

Thus

‖Px‖∞ ≤
∑2

i=1 (LFi
γ + µFi

)K∗
i

Γ(ρ+ 1)
.

This shows that (PBγ) is uniformly bounded.
Finally, we prove that (PBγ) is equicontinuous. Let x ∈ Bγ . Then for

t1, t2 ∈ I with t1 ≤ t2, we have

|(Px)(t2)− (Px)(t1)|

=

∣

∣

∣

∣

1

Γ(ρ)

∫ t2

0
(t2 − s)ρ−1

(
∫ s

0
|K1(s, τ)| |F1(x(τ))| dτ

+

∫ 1

0
|K2(s, τ)| |F2(x(τ))| dτ

)

ds

− 1

Γ(ρ)

∫ t1

0
(t1 − s)ρ−1

(
∫ s

0
|K1(s, τ)| |F1(x(τ))| dτ

+

∫ 1

0
|K2(s, τ)| |F2(x(τ))| dτ

)

ds

∣

∣

∣

∣

≤ 1

Γ(ρ)

(
∫ t2

t1

(t2 − s)ρ−1

∫ s

0
|K1(s, τ)| |F1(x(τ))| dτds

+

∫ t1

0

∣

∣(t2 − s)ρ−1 − (t1 − s)ρ−1
∣

∣

∫ s

0
|K1(s, τ)| |F1(x(τ))| dτds

)

+
1

Γ(ρ)

(
∫ t2

t1

(t2 − s)ρ−1

∫ s

0
|K2(s, τ)| |F2(x(τ))| dτds

+

∫ t1

0

∣

∣(t2 − s)ρ−1 − (t1 − s)ρ−1
∣

∣

∫ s

0
|K2(s, τ)| |F2(x(τ))| dτds

)

,

which implies

|(Px)(t2)− (Px)(t1)| ≤ (LF1
γ + µF1

)K∗
1

Γ(ρ)

(
∫ t2

t1

(t2 − s)ρ−1ds
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+

∫ t1

0

∣

∣(t2 − s)ρ−1 − (t1 − s)ρ−1
∣

∣ ds

)

+
(LF2

γ + µF2
)K∗

2

Γ(ρ)

(
∫ t2

t1

(t2 − s)ρ−1ds

+

∫ t1

0

∣

∣(t2 − s)ρ−1 − (t1 − s)ρ−1
∣

∣ ds

)

≤
(

(LF1
γ + µF1

)K∗
1

Γ(ρ)
+

(LF2
γ + µF2

)K∗
2

Γ(ρ)

)

×
(

(t2 − t1)
ρ

ρ
+
t
ρ
1

ρ
− t

ρ
2

ρ
+

(t2 − t1)
ρ

ρ

)

≤ 2
∑2

i=1 (LFi
γ + µFi

)K∗
i

Γ(ρ+ 1)
(t2 − t1)

ρ,

which tends to zero as t2 − t1 → 0. So, (PBγ) is equicontinuous. Hence along
with the Arzela-Ascoli theorem, it is concluded that P : C(I,R) → C(I,R) is
continuous and completely continuous.

An application of Theorem 4 shows that P has a fixed point x in Bγ which
is a solution of the Caputo fractional VFIDE (1).

The uniqueness result for the Caputo fractional VFIDE (1) will be proved
by using Theorem 3.

Theorem 6. Suppose (H1)− (H4) hold. If
(

Lh +

∑2
i=1 LFi

K∗
i

Γ(ρ+ 1)

)

< 1, (9)

then the Caputo fractional VFIDE (1) has a unique solution on I.

Proof. Thanks to Lemma 3, the equivalent fractional integral equation to
Caputo fractional VFIDE (1) can be written as operator equation as follows

x = Tx, x ∈ C(I,R),

where the operator T : C(I,R) → C(I,R) defined by

(Tx)(t) = x0 + h(x) +
1

Γ(ρ)

∫ t

0
(t− s)ρ−1g(s)ds

+
1

Γ(ρ)

∫ t

0
(t− s)ρ−1

(
∫ s

0
K1(s, τ)F1(x(τ))dτ
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+

∫ 1

0
K2(s, τ)F2(x(τ))dτ

)

ds,

for all t ∈ I. Let x, x∗ ∈ C(I,R). Then for for each t ∈ I we have

|Tx(t)− Tx∗(t)|
≤ |h(x(t)) − h(x∗(t))|

+
1

Γ(ρ)

∫ t

0
(t− s)ρ−1

(

∫ s

0
K1(s, τ) |F1(x(τ)) − F1(x

∗(τ))| dτ
)

ds

+
1

Γ(ρ)

∫ t

0
(t− s)ρ−1

(

∫ 1

0
K2(s, τ) |F2(x(τ)) − F2(x

∗(τ))| dτ
)

ds

≤ Lh ‖x− x∗‖∞ +
1

Γ(ρ)

∫ t

0
(t− s)ρ−1K∗

1LF1
‖x− x∗‖∞ ds

+
1

Γ(ρ)

∫ t

0
(t− s)ρ−1K∗

2LF2
‖x− x∗‖∞ ds

≤
(

Lh +
K∗

1LF1
+K∗

2LF2

Γ(ρ+ 1)
tρ
)

‖x− x∗‖∞ ,

which implies

‖Tx− Tx∗‖∞ ≤
(

Lh +

∑2
i=1 LFi

K∗
i

Γ(ρ+ 1)

)

‖x− x∗‖∞ .

The relation (9) shows that T is contraction on C(I,R). Hence, by the conclu-
sion of Theorem 3, T has a unique fixed point, which is solution of the Caputo
fractional VFIDE (1).

4. Approximate solution

Here, we provide the approximate solution of the Caputo fractional VFIDE (1)
which relies on the fractional Adomian decomposition technique.

First, we recall the classical Adomian decomposition technique where the
solution of the proposed problem is obtained in the form of a series as

x =

∞
∑

n=0

xn, (10)
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and the nonlinear terms F1, F2 and h are decomposed as

F1 =
∞
∑

n=0

An, F2 =
∞
∑

n=0

Bn, h =
∞
∑

n=0

Dn (11)

where An, Bn,Dn are Adomian polynomials for all n ∈ N, and write

x = x(λ) =

∞
∑

n=0

λnxn = x0 + λx1 + λ2x2 + · · ·+ λkxk + · · · (12)

F1 = F1(λ) =

∞
∑

n=0

λnAn = A0 + λA1 + λ2A2 + · · ·+ λkAk + · · · (13)

F2 = F2(λ) =

∞
∑

n=0

λnBn = B0 + λB1 + λ2B2 + · · ·+ λkBk + · · · (14)

h = h(λ) =

∞
∑

n=0

λnDn = D0 + λD1 + λ2D2 + · · ·+ λkDk + · · · (15)

By utilizing the previous formulas (12) (13), (14) and (15), we deduce that

An =
1

n!

[

dn

dλn

(

F1

∞
∑

i=0

λixi

)]

λ=0

,

Bn =
1

n!

[

dn

dλn

(

F2

∞
∑

i=0

λixi

)]

λ=0

,

Dn =
1

n!

[

dn

dλn

(

h

∞
∑

i=0

λixi

)]

λ=0

,

where x0, x1, x2, ... are repeatedly specified by















x0(t) = x0 + I
ρ

0+
(g(t))

xk+1(t) = Dk + I
ρ

0+

(

∫ t

0 K1(t, ξ)Akdξ
)

+Iρ
0+

(

∫ 1
0 K2(t, ξ)Bkdξ

)

, k ≥ 1.

(16)
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Now, we apply the modified Adomian decomposition method, Therefore, the
scheme (16) gives







































x0(t) = x0 +R1(t),

x1(t) = R2(t) +D0 + I
ρ

0+

(

∫ t

0 K1(t, ξ)A0dξ
)

+Iρ
0+

(

∫ 1
0 K2(t, ξ)B0dξ

)

,

xk+1(t) = Dk + I
ρ

0+

(

∫ t

0 K1(t, ξ)Akdξ
)

+Iρ
0+

(

∫ 1
0 K2(t, ξ)Bkdξ

)

, k ≥ 1.

(17)

Now, we will study the convergence theorem of the solution based on the
MADM.

Theorem 7. Assume that (H1)−(H4) and (5) are satisfied, if the solution
x(t) =

∑∞
i=0 xi(t) and ‖x‖∞ <∞ is convergent, then it converges to the exact

solution of the Caputo fractional VFIDE (1).

Proof. The proof is similar to some works found in the literature see [8], so
we omit it.

Example 1. Consider an integro-differential equation with Caputo frac-
tional derivative







CD
1

2

0+
x(t) = 2√

π

(

4t
3
2

Γ(6) + t
1

2

)

+ t3

Γ(7) +
t

Γ(8)

+1
4

∫ t

0 (1 + t− s)x(s)ds+ 5
18

∫ 1
0 e

s−tx2(s)ds,

(18)

with the nonlocal condition

x(0) =
1

4
x(

1

3
) (19)

where

ρ =
1

2
, x0 = 0, h(x(t)) =

1

4
x(

1

3
),

g(t) =
2√
π

(

4t
3

2

Γ(6)
+ t

1

2

)

+
t3

Γ(7)
+

t

Γ(8)
,

K1(t, ξ) =
1

4
(1 + t− ξ), K2(t, ξ) =

5

18
eξ−t.

Clearly, LF1
= LF2

= 1, Lh = 1
4 .

µg : = sup
t∈[0,1]

|g(t)| = ‖g‖∞
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=
2√
π

(

4

Γ(6)
+ 1

)

+
1

Γ(7)
+

1

Γ(8)

=
1302 +

√
π

630
√
π

,

K∗
1 =

1

4
sup
t∈I

∫ t

0
|1 + t− ξ| dξ = 1

8
.

K∗
2 =

5

18
sup
t∈I

∫ t

0

∣

∣

∣
eξ−t

∣

∣

∣
dξ =

5

18
sup
t∈I

e−t

∫ t

0

∣

∣

∣
eξ
∣

∣

∣
dξ

=
5

18
(1− 1

e
).

Hence,

∆1 :=

(

Lh +

∑2
i=1 LFi

K∗
i

Γ(ρ+ 1)

)

≈ 0.6 < 1.

As consequence of Theorem 6, then the problem (18)-(19) has a unique solution
on [0, 1].

Applying the operator I
1

2

0+
to both sides of equation (18-a), we get

x(t) =
1

4
x(

1

3
) + I

1

2

0+

(

2√
π

(

4t
3

2

Γ(6)
+ t

1

2

)

+
t3

Γ(7)
+

t

Γ(8)

)

+I
1

2

0+

(

1

4

∫ t

0
(1 + t− s)x(s)ds

)

+ I
1

2

0+

(

5

18

∫ 1

0
es−tx2(s)ds

)

.

Suppose

R(t) = I
1

2

0+

(

2√
π

(

4t
3

2

Γ(6)
+ t

1

2

)

+
t3

Γ(7)
+

t

Γ(8)

)

=
2√
π

4

Γ(6)

(

I
1

2

0+
s

3

2

)

(t) +
2√
π

(

I
1

2

0+
s

1

2

)

(t)

+
1

Γ(7)

(

I
1

2

0+
s3
)

(t) +
1

Γ(8)

(

I
1

2

0+
s

)

(t)

=
8Γ(52)√
πΓ(6)Γ(3)

t2 +
2Γ(32 )√

π
t+

Γ(4)

Γ(7)Γ(92 )
t
7

2 +
1

Γ(52)
t
3

2 .

Now, we apply the modified Adomian decomposition method,

R(t) = R1(t) +R2(t)
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where

R1(t) =
8Γ(52 )√
πΓ(6)Γ(3)

t2,

and

R2(t) =
2Γ(32 )√

π
t+

Γ(4)

Γ(7)Γ(92 )
t
7

2 +
1

Γ(52)
t
3

2 .

The modified recursive relation

x0(t) = R1(t) =
8Γ(52 )√
πΓ(6)Γ(3)

t2,

x1(t) = R2(t) + I
1

2

0+

(

1

4

∫ t

0
(1 + t− s)A0(s)ds

)

+I
1

2

0+

(

5

18

∫ 1

0
es−tB0(s)ds

)

+D0(t)

=
2Γ(32)√

π
t+

Γ(4)

Γ(7)Γ(92 )
t
7

2 +
1

Γ(52)
t
3

2

+I
1

2

0+

(

1

4

∫ t

0
(1 + t− s)x0(s)ds

)

+I
1

2

0+

(

5

18

∫ 1

0
es−tx0(s)ds

)

+
1

4
x0(

1

3
)

=
2Γ(32)√

π
t+

Γ(4)

Γ(7)Γ(92 )
t
7

2 +
1

Γ(52)
t
3

2

+I
1

2

0+

(

1

4

∫ t

0
(1 + t− s)

8Γ(52 )√
πΓ(6)Γ(3)

s2ds

)

+I
1

2

0+

(

5

18

∫ 1

0
es−t 8Γ(52 )√

πΓ(6)Γ(3)
s2ds

)

+
1

4

8Γ(52 )√
πΓ(6)Γ(3)

(

1

3

)2

= 0,

x2(t) = 0,

...

xn(t) = 0.
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Therefore, the obtained solution is

x(t) =

∞
∑

i=0

xi(t) =
8Γ(52 )√
πΓ(6)Γ(3)

t2.
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