ON A FRACTIONAL q-INTEGRAL OPERATOR INVOLVING
THE BASIC ANALOGUE OF FOX-WRIGHT FUNCTION
Jaime Castillo1, Leda Galué2 1Researching Center, University of La Guajira
Faculty of Engineering, Block 6
Riohacha – 440002, COLOMBIA 2CIMA, University of Zulia
Maracaibo – 4001, VENEZUELA
The fractional q-calculus is the q-extension of the ordinary fractional calculus. In the second half of the twentieth century there was a significant increase of activity in the area of the q-calculus due to its applications in mathematics and physics. Particularly, the operators of
fractional calculus and their q-analogues have many applications. They can be used in crack problems in elasticity, in chaos theory, control systems, signal processing, bio-medical engineering, radars, sonars, etc. The aim of this paper is to define a new fractional q-integral operator of Kober type using the basic analogue of Fox-Wright function as kernel, and to establish a composition formula for a particular type of these operators. Also, some particular cases are obtained.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] R.P. Agarwal, Certain fractional q-integral and q-derivatives, Proc. Camb.
Phil. Soc., 66 (1969), 365-370.
[2] W.A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edin.
Math. Soc., 15 (1966), 135-140.
[3] G.E. Andrews, q-Series: Their Development and Application in Analysis,
Number Theory, Combinatorics, Physics, and Computer Algebra, Regional
Conference Series in Math. 66, Amer. Math. Soc. (1986).
[4] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Lecture
Notes in Mathematics 2056, Springer, Berlin (2012).
[5] G. Bangerezako, Variational calculus on q-nonuniform lattices, J. Math.
Anal. and Appl., 306 (2005), 161-179.
[6] F. Bouzaffour, Hardy type inequalities for fractional and q−fractional integral
operators, Math. Inequal. Appl., 16 (2013), 601-609.
[7] K. Brahim and S. Taf, On some fractional q-integral inequalities, J. Mat.,
3 (2013), 21-26.
[8] K. Brahim and S. Taf, Some fractional integral inequalities in quantum
calculus, J. Fract. Calc. Appl., 4 (2013), 245-250.
[9] Y.Q. Chen and B.M. Vinagre, A new IIR-type digital fractional order
differentiator, Signal Processing, 83 (2003), 2359-2365.
[10] Z. Dahmani and A. Benzidane, New weighted Gruss type inequalities via
(, ) fractional q-integral inequalities, Intern. J. Innovation and Appl.
Studies, 1 (2012), 76-83.
[11] M. Delgado and L. Galu´e, Fractional q-integral operator involving basic
hypergeometric function, Groups Geom., 25 (2008), 53-74.
[12] Y. Ding, S.Z. Shan Zhen Lu and K. Yabuta, Multilinear singular and
fractional integrals, Acta Math. Sinica, 22 (2006), 347-356.
[13] L. Galu´e, Generalized Erd´erlyi-Kober fractional q− integral operator,
Kuwait J. Sci. Eng., 36 (2009), 21-34.
[14] L. Galu´e, Generalized Weyl fractional q-integral operator, Algebras Groups
and Geometries, 26 (2009), 163-178.
[15] L. Galu´e, On composition of fractional q-integral operators involving basic
hipergeometric functions, J. Ineq. and Spec. Functions, 1 (2010), 39-52.
[16] L. Galu´e, Unification of q-fractional integral operator, Algebras, Groups
and Geom., 28 (2011), 283-298.
[17] L. Galu´e, Unified fractional q-integral operator of q-special functions, Al-
gebras, Groups and Geom., 28 (2011), 185-204.
[18] L. Galu´e, Some results involving generalized Erd´e lyi-Kober fractional q-
integral operators, Revista Tecnocient´ıfica URU 6 (2014), 77-89.
[19] M. Garg and L. Chanchlani, Kober fractional q-derivative operators, Le
Matematiche 66 (2011), 13-26.
[20] M. Garg and L. Chanchlani, q-analogues of Saigo’s fractional calculus operators,
Bull. Math. Anal. and Appl., 3 (2011), 169-179.
[21] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University
Press, Cambridge (2004).
[22] H. Gauchman, Integral Inequalities in q−Calculus, Computers and Math-
ematics with Applications 47 (2004), 281-300.
[23] O. Gorosito, G. Pradolini and O. Salinas, Weighted weak-type estimates for
multilinear commutators of fractional integrals on spaces of homogeneous
type, Acta Math. Sinica, 23 (2007), 1813-1826.
[24] T. Hayat, S. Nadeem and S. Asghar, Periodic unidirectional fows of a
viscoelastic fluid with the fractional Maxwell model, Appl. Math. Comput.,
151 (2004), 153-161.
[25] M. Ismail, Classical and Quantum Orthogonal Polynomials in One Vari-
ables, Cambridge University Press, Cambridge (2005).
[26] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41
(1910), 193-203.
[27] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New
York (2002).
[28] V. Kiryakova, Generalized Fractional Calculus and Applications, Longman J. Wiley, Harlow - N. York (1994).
[29] E. Koelink, Quantum Groups and q-Special Functions, Report 96-10, Universiteit
van Amsterdam (1996).
[30] S. Momani and Z. Odibat, Numerical approach to differential equations of
fractional order, J. Comput. Appl. Math., 207 (2007), 96-110.
[31] K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press,
New York (1974).
[32] I. Podlubny, Fractional Differential Equations, Academic Press, New York
(1999).
[33] S.D. Purohit and R.K. Yadav, On generalized fractional q-integral operators
envolving the q−Gauss hypergeometric function, Bull. Math. Anal.
Appl., 2 (2010), 35-44.
[34] S.D. Purohit and R.K. Raina, Chebyshev type inequalities for the Saigo
fractional integrals and their q-analogues, J. Math. Ineq., 7 (2013), 239-
249.
[35] S.D. Purohit, F. U¸car, and R.K. Yadav, On fractional integral inequalities
and their q−analogues, Revista Tecnocient ´ıfica URU, 6 (2014), 53-66.
[36] E.D. Rainville, Special Functions, The MacMillan (1960).
[37] P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, Fractional integrals
and derivatives in q-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-
323.
[38] P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, A generalization of
the concept of q-fractional integrals, Acta Math. Sinica (Engl. Ser.), 25
(2009), 1635-1646.
[39] B. Ross (Ed.), Fractional Calculus and Its Applications, Lecture Notes in
Math., Springer-Verlag, New York (1975).
[40] M. Saigo, On the H¨older continuity of the generalized fractional integrals
and derivatives, Math. Rep. Kyushu Univ., 12 (1980), 55-62.
[42] R.K. Saxena, R.K. Yadav, S.D. Purohit and S.L. Kalla, Kober fractional
q−integral operator of the basic analogue of the H-function, Rev. T´ec. Ing.
Univ. Zulia, 28 (2005), 154-158.
[43] A. Secer, S.D. Purohit, K.A. Selvakumaran and M. Bayram, A generalized
q-Gr¨uss inequality involving the Riemann-Liouville fractional q-integrals,
J. Appl. Math., 2014 (2014), Art. ID 914320, 6 pp.
[44] L. Slater, Generalized Hypergeometric Functions, Cambridge University
Press, London (1966).
[45] I.N. Sneddon, The use in mathematical physics of Erd´e lyi-Kober operators
and some of their generalizations, Fractional Calculus and Its Applications,
Lecture Notes in Math. 457 (1975), 37-39.
[46] H.M. Srivastava, Per W. Karlsson, Multiple Gaussian Hypergeometric Se-
ries, John Wiley & Sons, New York (1985).
[47] W.T. Sulaiman, On some new fractional q-integral inequalities, South
Asian J. of Math., 2 (2012), 450-459.
[48] C.C. Tseng, Design of fractional order digital FIR differentiators, IEEE
Signal Process. Letters, 8 (2001), 77-79.
[49] B.M. Vinagre, Y.Q. Chen and I. Petras, Two direct Tustin discretization
methods for fractional-order differentiator and integrator, J. Franklin In-
stitute, 340 (2003), 349-362.
[50] B.J. West, M. Bologna and P. Grigolini, Physics of Fractal Operators,
Springer, New York (2002).
[51] R.K. Yadav and S.D. Purohit, Application of Riemann-Liouville fractional
q-integral operator to basic hypergeometric functions, Acta Ciencia Indica,
30 (2004), 593-600.
[52] R.K. Yadav and S.D. Purohit, On applications of Weyl fractional qintegral
operator to generalized basic hypergeometric functions, Kyungpook Math.
J., 11 (2008), 129-142.
[53] K. Yao, W.Y. Su, S.P. Zhou, The fractional derivatives of a fractal function,
Acta Math. Sinica, 22 (2006), 719-722.
[54] G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford
University Press, Oxford (2005).