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1. Introduction

In the present paper we study the existence of positive solutions of a second-
order ordinary differential equation (ODE)

u′′ + cu′ + f (t, u) = 0, t ∈ (a,+∞), (1)

coupled with the boundary conditions

u(a) = u(+∞) = 0, (2)

where c > 0 is a constant, a ∈ R. We suppose that f (t, s) : R2 → R and
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fs (t, s) = ∂f
∂s

(t, s) , ft (t, s) = ∂f
∂t

(t, s) are continuous functions which satisfy
the following conditions:

c1|s|1+q ≤ |f(t, s)| ≤ c2|s|1+q, sf(t, s) ≥ 0, ∀(t, s) ∈ R2, (H1)

fs(t, s)s
2 −Af(t, s) ≥ 0, ∀(t, s) ∈ R2, (H2)

f(t, s)s− (2 + α)F (t, s) ≥ 0, ∀(t, s) ∈ R2, (H3)

c3|s|q+2 ≥ ft (t, s) s ≥ 0, ∀(t, s) ∈ R2, (H4)

where A > 1, α > 0, cj > 0, j = 1, 2, 3, and F (t, s) :=
s
∫

0

f (t, τ) dτ .

An example of a function f , which satisfies these conditions is f(t, s) =
C |s|q .s with A ∈ (1, q + 1] , α = q, c1 = c2 = c3 = C > 0.

We will look for positive solutions u of (1.1) such that u ∈ H1
0 (a,+∞)∩Hc,a,

where H1
0 (a,+∞) is the usual Sobolev space and

Hc,a :=

{

u ∈ H1
loc (a,+∞) :

∫ +∞

a

ectu′ (t)2 dt < +∞, u (+∞) = 0

}

(3)

with norm

||u||c,a =

∫ +∞

a

ect
(

u′ (t)2 + u (t)2
)

dt

and H0
c,a := Hc,a ∩H1

0 (a,+∞) = {u ∈ Hc,a : u (a) = 0}.
Equation (1) is obtained by the Fisher-Kolmogorov’s equation ut = uxx +

f (t, u) , looking for the traveling waves u (x, t) = U (x− ct) with speed c.
There is a vast studies on heteroclinic solutions of eq. (1). We refer the reader
to Kolmogorov, Petrovsky and Piskunov [3], Aronson and Weinberger [2], Arias
and al. [1], Nehari [7], Versini [9], Szulkin [8], Li and Wang [4] and references
therain. Solutions of (1) with initial data with compact support are studied in
[2]. Fast solutions of Eq. (1) are studied in the paper of Arias and al. [1] via
variational methods. Heteroclinic solutions for non-autonomous second order
differential equations are studied in [5, 10]. Verzini also studied equation of
type (1), when c = 0, and she proves the existence of many oscillating solutions
belonging to L∞ (R). She used the variational method and the approach of
Nehari [7]. In the present paper we will prove the existence of positive solution
of Eq. (1), belonging to H1

0 (a,+∞), using the methods of [9].
Note that by (H1) it follows

c1

q + 2
|s|q+2 ≤ F (t, s) ≤ c2

q + 2
|s|q+2, ∀ (t, s) ∈ R2, (4)

for some positive constants c1 and c2.
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We introduce the energy functional associated with the problem (1), (2),
further referred as (P):

J[a,b] (u) :=

∫ b

a

ect

(

u′ (t)2

2
− F (t, u (t))

)

dt,

J (u) = J[a,+∞) (u) :=

∫ +∞

a

ect

(

u′ (t)2

2
− F (t, u (t))

)

dt,

where a ∈ R is a fixed real number and b ∈ (a,+∞). Let

µ (u) = µ[a,+∞) (u) := sup
λ>0

J[a,+∞) (λu) = sup
λ>0

J (λu) . (5)

We will prove that for each nonzero function u, µ (u) = sup
λ>0

J (λu) ≥ C > 0.

There exists unique number λ = λ (u) > 0, for which sup
λ>0

J (λu) is attained, i.e.

µ (u) = sup
λ>0

J (λu) = J (λ (u) u) .

We introduce the following set, analogous to the Nehari manifold:

N (a,+∞) :=
{

u ∈ H0
c,a r (0) : λ (u) = 1

}

=
{

u ∈ H0
c,a r (0) : ∇J (u) .u = 0

}

,

as in Verzini [9]. Since we are looking for the solutions of (1), which are non-
negative on [a,+∞), we introduce the set

N+ (a,+∞) := {u ∈ N (a,+∞) : u ≥ 0} .
Define the function

ϕ+ (a,+∞) := inf

{

sup
λ>0

J (λu) : u ∈ H0
c,a r (0) , u ≥ 0

}

.

Our main result is:

Theorem 1. Let the conditions (H1)-(H4) hold.
Then ϕ+ (a,+∞) is attained by at least one function u+ ∈ N+ (a,+∞) , u+ >

0 on (a,+∞) and u+ (t) is a solution of the problem (P) for t ∈ (a,+∞).

The paper is organized as follows. In Section 2 we give preliminaries on the
function spaces, embedding inequalities and three lemmas for the corresponding
functional J . In Section 3 we give the proof of Theorem 1 and some comments.
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2. Preliminaries

By [1] for each u ∈ Hc,a the following inequality holds:
∫ +∞

a

ectu′ (t)2 dt ≥ c

2
ect0u (t0)

2 +
c2

4

∫ +∞

a

ectu (t)2 dt (6)

for any t0 ∈ [a,+∞) . The inequality (6) shows that in the linear space Hc,a we
can introduce the norm

‖u‖Hc,a
=

(
∫ +∞

a

ectu′ (t)2 dt

)
1

2

,

corresponding to the scalar product 〈u, v〉Hc,a
=
∫ +∞
a

ectu′ (t) v′ (t) dt.

For each function u ∈ Hc,a ⊂ L∞ [a,+∞), sup
t∈[a,+∞)

|u (t)| < +∞ and it is

attained, i.e.

sup
t∈[a,+∞)

|u (t)| = max
t∈[a,+∞)

|u (t)| = |u (t1)|

for some point t1 ∈ [a,+∞). Further by C we will denote various positive
constants not depending on u.

We have the following lemma.

Lemma 1. Let u ∈ Hc,a. Then the inequality

∫ +∞

a

ectu′ (t)2 dt ≥ C(u (t1)
2 +

∫ +∞

a

ectu (t)2 dt+

∫ +∞
a

ect |u (t)|q+2 dt

|u (t1)|q
(7)

+ (

∫ +∞

a

ect |u (t)|q+2 dt)
2

q+2 ),

holds for a constant C > 0.

Proof. We have by (6) that
∫ +∞

a

ectu′ (t)2 dt ≥ c

2
ect1u (t1)

2 ,

∫ +∞

a

ectu′ (t)2 dt ≥ c2

4

∫ +∞

a

ectu (t)2 dt.

By Young’s inequality we get
∫ +∞

a

ectu′(t)2dt ≥ C(u(t1)
2 +

∫ +∞

a

ectu(t)2dt)
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≥ C

(

u (t1)
2 +

∫ +∞
a

ect|u (t) |q+2dt

|u (t1)|q

)

≥ C
(

u (t1)
2
)

q

q+2

(

∫ +∞
a

ect |u (t)|q+2 dt
) 2

q+2

(|u (t1)|q)
2

q+2

= C

(∫ +∞

a

ect |u (t)|q+2 dt

)
2

q+2

, C > 0

for each nonzero function u ∈ Hc,a. These inequalities imply (7).

Next, we have the following

Lemma 2. Let the function f(t, s) ∈ C1
(

R2
)

satisfy the conditions (H1),
(H4) and µ (u) is defined by (5). Then, for every nonzero function u (t) ∈ Hc,a,
µ[a,+∞) (u) ≥ C > 0, where the constant C does not depend on u.

Proof. By (4),

J (λu) =
1

2
λ2

∫ +∞

a

ectu′ (t)2 dt−
∫ +∞

a

ectF (t, λu (t)) dt

≥ 1

2
λ2

∫ +∞

a

ectu′ (t)2 dt−
(

c2

q + 2

∫ +∞

a

ect |u (t)|q+2 dt

)

λq+2

= A1λ
2 −Bλq+2,

where A1 = 1
2

∫ +∞
a

ectu′ (t)2 dt > 0, B = c2
q+2

∫ +∞
a

ect |u (t)|q+2 dt > 0, since
u (t) ∈ Hc,a is nonzero function. We have that for every λ ∈ [0,+∞) ,

µ[a,+∞) (u) = sup
λ>0

J (λu)

≥ c4 (q)
2

2

q .q

(q + 2)
1+ 2

q







1
2

∫ +∞
a

ectu′ (t)2 dt
(

c2
q+2

∫ +∞
a

ect |u (t)|q+2 dt
) 2

q+2







q+2

q

≥ c5 (q) > 0,

where the constants c4 (q) and c5 (q) depend only on q. In the conclusion of the
last inequality, we took into account (7). The lemma is proved.

Let u (t) ∈ Hc,a be an arbitrary fixed nonzero function and the conditions
of Lemma 2 be fulfilled. By (4) we have
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J (λu) =
1

2
λ2

∫ +∞

a

ectu′ (t)2 dt−
∫ +∞

a

ectF (t, λu (t)) dt

≤ λ2A1 −
(

c1

q + 2

∫ +∞

a

ect |u (t)|q+2 dt

)

λq+2

= A1λ
2 −B1λ

q+2.

Then J (λu) < 0 for sufficiently large λ > 0. Since J (0) = 0 and J (λu) is
continuous function in λ, then µ (u) = sup

λ>0
J (λu) is attained.

Moreover µ (u) = µ (ku) for every constant k > 0.
Thus for the given nonzero function u (t) ∈ Hc,a, there exists a positive

number λ0 > 0, such that

µ (λ0u) = J (λ0u) = sup
λ>0

J (λu) .

If we denote the function λ0u ∈ Hc,a\ {0} again by u, then the last equality
can be written as

µ (u) = J (u) . (8)

We show that for any nonzero function v ∈ Hc,a, i.e. function belonging to
Hc,a\ {0}, there exists a function u ∈ Hc,a\ {0} such that u = kv, with suitable
constant k > 0 , such that (8) holds. As in [9, p.2017] it follows that

∂

∂λ
J (λu) |λ=1= ∇J (u) u =

∫ +∞

a

ect
(

u′ (t)2−f (t, u (t))u (t)
)

dt = 0, (9)

which holds for critical points of J (λu) as a function of λ.

Lemma 3. Let the function f(t, s) ∈ C1
(

R2
)

satisfy the conditions (H1),
(H2) and (H4) and u ∈ Hc,a be nonzero function, for which (9) holds. Then

J ′′ (u) [u, u] < 0.

Moreover there exists unique number λ = λ (u) > 0 such that µ (u) = J (λ (u) u)
and the function u → λ (u) is of class C1.

Proof. We suppose that for the nonzero function u ∈ Hc,a, (9) holds, but
J ′′ (u) [u, u] ≥ 0. Then

∫ +∞

a

ect
(

u′ (t)2 − fs (t, u (t))u (t)
2
)

dt ≥ 0. (10)



POSITIVE SOLUTIONS FOR A SECOND ORDER... 957

Subtracting (10) from (9), we obtain that
∫ +∞

a

ect
(

fs (t, u (t)) u (t)
2 − f (t, u (t))u (t)

)

dt ≤ 0.

Taking into account (H1) and (H2), we get

0 ≥
∫ +∞

a

ect
(

fs (t, u (t)) u (t)
2 − f (t, u (t))u (t)

)

dt

≥
∫ +∞

a

ect (A− 1) f (t, u (t)) u (t) dt

≥ c5 (A− 1)

∫ +∞

a

ect |u (t)|2+q dt,

where the constant c5 > 0 and A > 1. Thus we proved that
∫ +∞
a

ect |u (t)|2+q dt ≤
0. But it is impossible for nonzero function u (t). The obtained contradiction
shows that the considered function u (t) satisfies the inequality J ′′ (u) [u, u] < 0.
The rest of the proof of the lemma is as in [9, Proposition 3.1]. Exactly, the
unique number λ = λ (u) > 0 such that µ (u) = J (λ (u)u), satisfies the equa-
tion

Φ (λ (u) , u) := ∇J (λ (u)u) .u = 0.

Also ∂
∂λ

Φ (λ, u) = ∂
∂λ

(∇J (λu) .u) = J ′′ (λu) [u, u] < 0 for λ = λ (u), where Φ is
of class C1 and the function λ = λ (u) can be locally implicitly defined. From
the implicit function theorem λ (u) is of class C1. Lemma 3 is proved.

The considerations in the proof of Lemma 3 show that

ϕ+ (a,+∞) = inf
N+[a,+∞)

J (u) .

3. Proof of the main result

Let {un} ⊂ N+ (a,+∞) be a minimizing sequence for ϕ+ (a,+∞) . Without
loss of generality, we can suppose that

ϕ+ (a,+∞) + ε ≥ J (un) −→ ϕ+ (a,+∞) , n → +∞ (11)

for sufficiently small number ε > 0.

Proof of Theorem 1:
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Step 1. We have

c6

∫ +∞

a

ectu′n (t)
2 dt ≤ J (un) ≤ c7

∫ +∞

a

ectu′n (t)
2 dt, (12)

c8

∫ +∞

a

ectF (t, un (t)) dt ≤ J (un) ≤ c9

∫ +∞

a

ectF (t, un (t)) dt (13)

for some positive constants ci, i = 6, 7, 8, 9. Since ∇J (un) .un = 0, as in (9),
∫ +∞

a

ect
(

u′n (t)
2 − f (t, un (t)) un (t)

)

dt = 0.

We have J (un) =
∫ +∞
a

ect
(

1
2u

′
n (t)

2 − F (t, un (t))
)

dt. By (H3) and (4),

2J (un) =

∫ +∞

a

ect (f (t, un (t))un (t)− 2F (t, un (t))) dt

≥ α

∫ +∞

a

ectF (t, un (t)) dt ≥
αc1

q + 2

∫ +∞

a

ect |un (t)|2+q dt.

This inequality shows that J (un) ≥ 0. Hence

1

2

∫ +∞

a

ectu′n (t)
2 dt =

∫ +∞

a

ectF (t, un (t)) dt+ J (un)

≤ c2

q + 2

∫ +∞

a

ect |un (t)|2+q dt+ J (un)

≤
(

1 +
2c2
αc1

)

J (un)

and

J (un) ≥
αc1

2αc1 + 4c2

∫ +∞

a

ectu′n (t)
2 dt.

By the definition of J (un) and (4), J (un) ≤ 1
2

∫ +∞
a

ectu′n (t)
2 dt. Thus, we

proved the first inequality (12) with c6 = αc1
2αc1+4c2

and c7 = 1
2 . The inequality

(13) holds with c8 =
α
2 and c9 =

c2(q+2)
2c1

by (H1) and (4) since

2J (un) ≤
∫ +∞

a

ectu′n (t)
2 dt =

∫ +∞

a

ectf(t, un (t))un (t) dt

≤ c2(q + 2)

c1

∫ +∞

a

ectF (t, un (t))dt.
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These assertions show that
∫ +∞
a

ectu′n (t)
2 dt and

∫ +∞
a

ect |un (t)|2+q dt are
bounded by constant, which does not depend on n. From the inequality (6),
the same is true for

∫ +∞
a

ectun (t)
2 dt . Hence

∫ +∞

a

ect(un (t)
2 + u′n (t)

2)dt

and
∫ +∞

a

ect |un (t)|2+q dt

are bounded by a constant, which does not depend on n. Then, the sequence

{un} is bounded in Hc,a equipped by the norm ‖u‖Hc,a
=
(

∫ +∞
a

ectu′ (t)2 dt
) 1

2

.

Step 2. There exists a function u0 ∈ H0
c,a := Hc,a ∩ H1

0 [a,+∞) and
subsequence {unk

} still denoted by {un}, such that un −→ u0 for n → +∞
in the week H0

c,a− topology; un −→ u0 for n → +∞ in the strong L2−
topology and on any bounded and closed subinterval of [a,+∞). Moreover
u0 ≥ 0 is nonzero function. Let us remind that {un} ⊂ N+ (a,+∞) and then
un ≥ 0, n = 1, 2, ... . Hence u0 ≥ 0.

We will prove that u0 is nonzero function. Suppose the contrary, i.e., that
u0 ≡ 0. This means that un −→ 0 for n → +∞ in the week H0

c,a− topology and
un −→ 0 for n → +∞ in the strong L2− topology on any bounded and closed
subinterval of [a,+∞). Let b > a be an arbitrary number. From [1, p.321],

|un (b)| ≤
(

e−cb

c

∫ +∞

b

ectu′n (t)
2 dt

)

1

2

≤ c10e
− c

2
b, ∀b > a (14)

and the constant c10 > 0 does not depend on n ∈ N and b. Let b ∈ (a,+∞) be
a fixed (sufficiently large) number. Then for every ε > 0, there exists n0 ∈ N,
depending on b and ε, such that

∫ b

a

ectun (t)
2 dt ≤ ecb

∫ b

a

un (t)
2 dt < ε, ∀n ≥ n0.

From (14), replacing b by t, |un (t)| ≤ c10e
− c

2
t, ∀t ∈ [a,+∞) and for some

n1 > n0, n1 ∈ N, depending on b, we get by q > 0
∫ b

a

ect|un (t) |2+qdt ≤ c10

∫ b

a

ect|un (t) |2dt <
ε

2
, ∀n ≥ n1. (15)

From (14), we have
∫ +∞

b

ect|un (t) |2+qdt ≤ max
t∈[b,+∞)

|un (t)|q .
∫ +∞

a

ect|un (t) |2dt ≤ c11e
− c

2
bq (16)
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and the constant c11 > 0 does not depend on b ∈ (a,+∞) and n ∈ N. Now let
ε > 0 be a fixed, sufficiently small number. We choose the number b ∈ (a,+∞)
so large, such that c11e

− c
2
bq < ε

2 . Then by (16),
∫ +∞

b

ect|un (t) |2+qdt <
ε

2
, ∀n ∈ N.

We choose the number n1 ∈ N , n1 > n0, such that (15) holds and hence
∫ +∞
a

ect|un (t) |2+qdt < ε, ∀n ≥ n1. Thus we prove that

lim
n→+∞

∫ +∞

a

ect|un (t) |2+qdt = 0.

By Step 1, (4) and (13) it follows lim
n→+∞

J (un) = 0.This contradicts to Lemma

2, according which J (un) = µ[a,+∞) (un) ≥ C > 0. The contradiction shows
that u0 is a nonzero function.

Step 3.
∫ +∞
a

ectu′n (t)
2 dt ≥

∫ +∞
a

ectu′0 (t)
2 dt+ o (1).

We have
∫ +∞

a

ectu′n (t)
2 dt =

∫ +∞

a

ect
[

u′0 (t) +
(

u′n (t)− u′0 (t)
)]2

dt (17)

=

∫ +∞

a

ectu′0 (t)
2 dt+ 2

∫ +∞

a

ect
(

u′n (t)− u′0 (t)
)

u′0 (t) dt

+

∫ +∞

a

ect
(

u′n (t)− u′0 (t)
)2

dt.

By un −→ u0 for n → +∞ weakly in H0
c,a we have

lim
n→+∞

∫ +∞

a

ect
(

u′n (t)− u′0 (t)
)

u′0 (t) dt

= lim
n→+∞

〈

u′n (t)− u′0 (t) , u
′
0 (t)

〉

Hc,a
= 0.

Then

2

∫ +∞

a

ect
(

u′n (t)− u′0 (t)
)

u′0 (t) dt = o (1) ,

and by (17),
∫ +∞

a

ectu′n (t)
2 dt ≥

∫ +∞

a

ectu′0 (t)
2 dt+ o (1) .

Step 4. lim
n→+∞

∫ +∞
a

ectF (t, un (t)) dt =
∫ +∞
a

ectF (t, u0 (t)) dt.

As in Step 2, replacing un by un − u0, we can prove that

lim
n→+∞

∫ +∞

a

ect |un (t)− u0 (t)|2+q dt = 0. (18)



POSITIVE SOLUTIONS FOR A SECOND ORDER... 961

By (H1) and un (t) ≥ 0 , u0 (t) ≥ 0,

|F (t, un (t))−F (t, u0 (t))| =

∣

∣

∣

∣

∣

∫ un(t)

u0(t)
f (t, τ) dτ

∣

∣

∣

∣

∣

≤ c2

∣

∣

∣

∣

∣

∫ un(t)

u0(t)
τ1+qdτ

∣

∣

∣

∣

∣

=
c2

q + 2

∣

∣

∣un (t)
2+q − u0 (t)

2+q
∣

∣

∣ .

Hence

∣

∣

∣

∣

∫ +∞

a

ectF (t, un (t)) dt−
∫ +∞

a

ectF (t, u0 (t)) dt

∣

∣

∣

∣

≤ c2

q + 2

∫ +∞

a

ect
∣

∣

∣
un (t)

2+q − u0 (t)
2+q
∣

∣

∣
dt

≤ K1

∫ +∞

a

ect |un (t)− u0 (t)|
(

un (t)
1+q + u0 (t)

1+q
)

dt.

Using the Hölder inequality, it is easy to obtain that

∣

∣

∣

∣

∫ +∞

a

ectF (t, un (t)) dt−
∫ +∞

a

ectF (t, u0 (t)) dt

∣

∣

∣

∣

≤ K1

(
∫ +∞

a

ect(un (t)
1+q + u0 (t)

1+q)
2+q

1+q dt

)

1+q

2+q

(
∫ +∞

a

ect |un (t)− u0 (t)|2+q dt

)
1

2+q

≤ K2

(∫ +∞

a

ectun (t)
2+q dt+

∫ +∞

a

ectu0 (t)
2+q dt

)

1+q

2+q

(∫ +∞

a

ect |un (t)− u0 (t)|2+q dt

)
1

2+q

≤ K3

(∫ +∞

a

ect |un (t)− u0 (t)|2+q dt

)
1

2+q

,

where Kj, j = 1, 2, 3 are constants not depending on u and n. Taking into
account (18), we obtain the assertion of Step 4.

Step 5. There exists a nonzero function u+ ∈ N+ (a,+∞), which u+ ≥ 0
and J[a,+∞) (u+) = ϕ+ (a,+∞) = inf

N+(a,+∞)
J[a,+∞) (u) > 0.
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From (4), Step 3 and Step 4 it follows that J (un) ≥ J (u0) + o (1) (i.e., the
functional J is weakly lower semi continuous). Hence the inequality J[a,+∞) (λu0) ≤
J[a,+∞) (λun) + o (1), ∀λ > 0 holds.

Define
u+ := λ (u0)u0.

We obtain,that u+ satisfies the conditions of Step 5.
We will prove that u+ > 0 on (a,+∞). For this purpose, we adapt the

proof of Theorem 3.1 of [9, pp. 2019-2020] to our case.

Claim 1. u+ ∈ C1 (a,+∞) . We assume that there exists τ ∈ (a,+∞), for
which u+ (τ) = 0 and u′+ (t) is not continuous for t = τ . Let u′+ (τ − 0) < 0
and the constants ρ > 0 and ε > 0 are sufficiently small numbers. For λ ∈
[1− ε, 1 + ε] we consider the class of problems

inf







υ (τ − ρ) = λu+ (τ − ρ)
J[τ−ρ,τ+ρ] (υ) : υ ∈ H1 (τ − ρ, τ + ρ) , υ (τ + ρ) = λu+ (τ + ρ)

‖υ‖∞ ≤ 1







(19)

where τ − ρ, τ + ρ ∈ (a,+∞). We have

d2

dλ2
J[τ−ρ,τ+ρ] (u+ λϕ)λ=0 =

∫ τ+ρ

τ−ρ

ect
(

ϕ′ (t)2 − f ′
s (t, u (t))ϕ (t)2

)

dt (20)

≥
∫ τ+ρ

τ−ρ

ectϕ′ (t)2 dt− c13

∫ τ+ρ

τ−ρ

ectϕ (t)2 dt

≥
(

c14

ρ2
− c3

)∫ τ+ρ

τ−ρ

ectϕ (t)2 dt > 0,

where the constants c13 := sup {f ′
s (t, u) : a ≤ t < +∞,−1 ≤ u ≤ 1}, c14 > 0,

and the function ϕ (t) vanishes on at least one point t = t0 ∈ [τ − ρ, τ + ρ]. As
in [9, p. 2026, Lemma 5.1], we can conclude, that J is strictly convex, and thus
the minimum of (19) is uniquely achieved by a function υλ. We will show that
υλ satisfies Eq. (1.) and lim

ρ→0
‖υλ‖H1(τ−ρ,τ+ρ) = 0. For this purpose, we need to

prove that |υλ (t)| < 1 and υλ (t) ≥ 0 for every t ∈ [τ − ρ, τ + ρ].

First, we prove that ‖υλ‖∞ = max
t∈[τ−ρ,τ+ρ]

|υλ (t)| < 1. Suppose the con-

trary, ‖υλ‖∞ = 1. By inclusion H1 (τ − ρ, τ + ρ) ⊂ C [τ − ρ, τ + ρ] , u+ ∈
C [τ − ρ, τ + ρ] and υλ ∈ C [τ − ρ, τ + ρ] . By u+ (τ) = 0, υλ (τ ± ρ) =
λu+ (τ ± ρ) = o (1) for ρ → 0+. If υλ (τ1) = ±1 for some τ1 ∈ (τ − ρ, τ + ρ) ,
then
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|υλ (τ1)− υλ (τ − ρ)| = 1− o (1) =

∣

∣

∣

∣

∫ τ1

τ−ρ

υ′λ (t) dt

∣

∣

∣

∣

≤
∫ τ+ρ

τ−ρ

e−
ct
2 e

ct
2

∣

∣υ′λ (t)
∣

∣ dt

≤
(∫ τ+ρ

τ−ρ

e−ctdt

)
1

2
(∫ τ+ρ

τ−ρ

ectυ′λ (t)
2 dt

)
1

2

=

(

e−c(τ−ρ) − e−c(τ+ρ)

c

)
1

2
(
∫ τ+ρ

τ−ρ

ectυ′λ (t)
2 dt

)
1

2

≤ c15
√
ρ

(∫ τ+ρ

τ−ρ

ectυ′λ (t)
2 dt

)
1

2

,

where the constant c15 > 0 is close to (2e−cτ )
1

2 for small ρ, i.e. c15 depends
only on τ. Since 1− o (1) ≥ 1√

2
for small ρ, then

∫ τ+ρ

τ−ρ

ectυ′λ (t)
2 dt ≥ 1

2c215ρ
.

Since F (t, υλ) is bounded for t ∈ [τ − ρ, τ + ρ], and 1
2c2

15
ρ
− C ≥ c16

ρ
for small

ρ > 0, it implies

J[τ−ρ,τ+ρ] (υλ) ≥
c16

ρ
. (21)

Remind that u+ ∈ H1 (τ − ρ, τ + ρ) and u+ (τ) = 0. As above

max
[τ−ρ,τ+ρ]

|u+ (t)| = max
[τ−ρ,τ+ρ]

|u+ (t)− u+ (τ)|

≤ c15
√
ρ

(∫ τ+ρ

τ−ρ

ectu′+ (t)2 dt

)
1

2

= o (1)
√
ρ,

because u+ ∈ H0
c,a and then

(

∫ τ+ρ

τ−ρ
ectu′+ (t)2 dt

)
1

2

= o (1) when ρ > 0 is suffi-

ciently small. Thus

|λu+ (τ ± ρ)| = o (
√
ρ) , ∀λ ∈ [1− ε, 1 + ε] .

Now we consider the linear function

w (t) = u+ (τ − ρ)− u+ (τ − ρ)− u+ (τ + ρ)

2ρ
(t− τ + ρ) .
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Evidently

w (t− ρ) = u+ (τ − ρ) ,

w (t+ ρ) = u+ (τ + ρ) and w′ (t) = u+(τ+ρ)−u+(τ−ρ)
2ρ . As above we have

|u+ (τ − ρ)− u+ (τ + ρ)| =

∣

∣

∣

∣

∫ τ+ρ

τ−ρ

u′ (s) ds

∣

∣

∣

∣

≤ c15
√
ρ

(
∫ τ+ρ

τ−ρ

ectu′+ (t)2 dt

)
1

2

=
√
ρ.o (1) ,

because u+ ∈ H0
c,a . Then

(

∫ τ+ρ

τ−ρ
ectu′+ (t)2 dt

)
1

2

= o (1) when ρ > 0 is suffi-

ciently small. Thus

∣

∣w′ (t)
∣

∣ ≤ C√
ρ
.o (1) ,

0 ≤
∫ τ+ρ

τ−ρ

ectw′ (t)2 dt ≤ C

ρ
.o (1)

∫ τ+ρ

τ−ρ

ectdt ≤ o (1) .

Also,

|w (t)| ≤ max (u+ (τ − ρ) , u+ (τ + ρ))

≤ max
[τ−ρ,τ+ρ]

|u+ (t)| = o (1)
√
ρ, ∀t ∈ [τ − ρ, τ + ρ] .

Hence ‖w‖H1[τ−ρ,τ+ρ] = o (1) and

J[τ−ρ,τ+ρ] (w) = o (1) , J[τ−ρ,τ+ρ] (λw) = o (1) ∀λ ∈ [1− ε, 1 + ε] . (22)

From (21) and (22), J[τ−ρ,τ+ρ] (λw) << J[τ−ρ,τ+ρ] (υλ), ∀λ ∈ [1− ε, 1 + ε]
for sufficiently small ρ > 0, (where a << b means that a

b
= o (1)). The

last inequality contradicts to the fact, that infimum in (19) is attained by the
function υλ. The contradiction is due to the assumption, that ‖υλ‖∞ = 1.
Therefore ‖υλ‖∞ < 1 and thus υλ is a solution of Eq.(1).

Now we will prove that υλ ≥ 0 for t ∈ [τ − ρ, τ + ρ]. Suppose the con-
trary. Then changing the sign, υλ vanish at some point of [τ − ρ, τ + ρ] and by
υλ (τ ± ρ) = λu+ (τ ± ρ) ≥ 0, it follows that υ′λ also vanish at some other point
of [τ − ρ, τ + ρ]. Since υλ satisfies (1), then

(

ectυ′λ
)′
+ ectf (t, υλ) = 0 =⇒ υ′λ (t) = −

∫ t

t1

e−c(t−s)f (s, υλ (s)) ds,
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where t1 ∈ [τ − ρ, τ + ρ] is such that υ′λ (t1) = 0. Then

∣

∣υ′λ (t)
∣

∣ ≤
∫ t

t1

e−c(t−s) |f (s, υλ (s))| ds

≤ c17

∫ τ+ρ

τ−ρ

e−c(t−s)ds = c17
e−c(τ−ρ) − e−c(τ+ρ)

c
≤ c18ρ,

because f (s, υλ (s)) is bounded, for s ∈ [τ − ρ, τ + ρ] . Thus
∣

∣υ′λ (t)
∣

∣ ≤ c18ρ ∀t ∈ [τ − ρ, τ + ρ] , (23)

where the constant c18 > 0 depends only on τ . Recall that u+ (τ) = 0 and
u′+ (τ − 0) < 0. Then for ρ > 0 sufficiently small, u+ (τ − ρ) = u+ (τ) −
ρu′+ (τ − 0) = −ρu′+ (τ − 0). Hence

υλ (τ − ρ) = λu+ (τ − ρ) = −λρu′+ (τ − 0) ,

i.e. c19ρ ≤ υλ (τ − ρ) ≤ c20ρ for ρ > 0 sufficiently small. Then υλ (t) =
υλ (τ − ρ) +

∫ t

τ−ρ
υ′λ (s) ds and from (23)

∣

∣

∣

∣

∫ t

τ−ρ

υ′λ (s) ds

∣

∣

∣

∣

≤ c18ρ
2 << υλ (τ − ρ) , ∀t ∈ [τ − ρ, τ + ρ] .

Thus υλ (t) cannot change the sign when t ∈ [τ − ρ, τ + ρ]. This consideration
is true also , when u′+ (τ − 0) = −∞, because υλ (τ − ρ) ≥ Cρ for sufficiently
large constant C > 0 and υλ (t) does not change the sign again. We prove, that
υλ ≥ 0 for t ∈ [τ − ρ, τ + ρ].

Note that υλ (t) ∈ C1(τ − ρ, τ + ρ), because υλ (t) satisfies Eq. (1) for
t ∈ (τ − ρ, τ + ρ). Now we define the function

∼
uλ (t) :=

{

υλ (t) , t ∈ [τ − ρ, τ + ρ] ,
λu+ (t) , t ∈ [a,+∞)� [τ − ρ, τ + ρ] .

We should note that
∼
uλ (t) ≥ 0 ∀t ∈ [a,+∞) and

∼
uλ (t) ∈ H0

c,a, because υλ (t)

satisfies the boundary conditions in (19). We will prove, that
∼
uλ → λu+ in

H0
c,a, when ρ → 0. Indeed, from (22), J[τ−ρ,τ+ρ] (υλ) ≤ J[τ−ρ,τ+ρ] (w) ≤ o (1)

and since

‖υλ‖∞ < 1 =⇒
∫ τ+ρ

τ−ρ

F (t, υλ (t)) dt <
2c2
q + 2

ρ,

then
∫ τ+ρ

τ−ρ
ectυ′λ (t)

2 dt = o (1) when ρ → 0. This proves that
∼
uλ → λu+ in H0

c,a,

when ρ → 0. Further the proof that u+ ∈ C1 (a,+∞) holds as in [9, p.2020]. Fi-
nally we should note that there exists finite right derivative u′+ (a+ 0). Indeed,
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if u+ (t) ≡ 0 in a small right neighborhood of a, then obviously u′+ (a+ 0) = 0.
If u+ (t) > 0 in a small right neighborhood of a, then u+ (t) satisfies (1) and it
is easy to show that

u′+ (a+ 0) : = lim
t→a+0

u′+ (t)

= e−c(a−t0)

[

u′+ (t0) +

∫ t0

a

ec(s−t0)f (s, u+ (s)) ds

]

,

where t0 > a is a point, close enough to a. Thus we prove, that u+ ∈
C1 [a,+∞) .

Claim 2. u+ (t) > 0, ∀t ∈ [a,+∞) .
We assume that u+ (t0) = 0 for some t0 > a, and u+ (t) > 0 in a small right

(left) neibourghood of t0. Since u+ ≥ 0, then t0 is a point of local minimum for
u+ and since u+ ∈ C1 (a,+∞), then u′+ (t0) = 0. Since f (t, 0) ≡ 0, then u ≡ 0
is a solution of (1) for the Cauchy conditions u (t0) = u′ (t0) = 0 and from the
uniqueness theorem of the local Cauchy problem, follows that u+ (t) ≡ 0 in a
small neibourhood of t0. Thus it implies u+ (t) = 0, ∀t ∈ [a,+∞), which
contradicts to the definition of u+ as a nonzero function. This contradiction
proves the assertion of Claim 2. Theorem 1 is proved.
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