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1. Introduction

The classical operational calculus is intended mainly to solving initial value
problems both for ordinary differential equations (ODEs) and for partial differ-
ential equations (PDEs) with constant coefficients, [15].

Adaptations of the Fokker-Planck equation serve as mathematical models of
various problems that arise in physical and biological sciences (see Caldas et al
[1] and the references therein). In statistical mechanics, for example, the Fokker-
Planck equation is used to describe kinetic processes in anomalous mediums.
In this application, the linear version of the equation is considered appropriate
for the description of a wide variety of physical phenomena characterized by
short-range interactions and/or short-time memories, typically associated with
normal diffusion. The nonlinear Fokker-Planck equation, on the other hand,
is associated with anomalous diffusion, generally associated with non-Gaussian
distributions Scarfone and Wada, [2].

In this paper we study a nonlinear Fokker-Planck equation (derived in Scar-
fone and Wada [2]) in the framework of statistical mechanics based on a two-
parameter entropy known as the Sharma-Taneja-Mittal (STM) entropy. The
equation is a (1 + 1)-partial differential equation, namely

ou 0 P [ (r+r o r—r _\]_
E—%(xu)—ﬁw[u (—2,1 ut -5 )]—O, (1)

where Q is a constant diffusion coefficient, r and & (# 0) are deformation pa-
rameters that characterise the underlying entropy and essentially define the
family of equations (1). The dependent variable u = u(x,t) is the normalized
density distribution describing a conservative particle system in the velocity-
time space (z,t). We shall refer to this equation as the Sharma-Taneja-Mittal
nonlinear Fokker-Planck (STM-NFP) equation. For a detailed account of the
context and derivation of the equation the interested reader may consult Scar-
fone and Wada [2] wherein Equation (1) is studied, along with two well-known
special cases, via Lie symmetry analysis. Admitted Lie point symmetries are
found and used to construct invariant solutions.

The invariant solutions of the STM-NFP equation reported in Scarfone and
Wada [2] are based on two infinitesimal symmetry generators

X; =0, Xo=ce'0,, (2)

the only ones admitted by the whole family of equations represented by (1)
for arbitrary r and . In this paper, we determine all instances, depending
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on specifications of r and &, under which equation (1) admits additional sym-
metries besides those in (2). This is called complete group classification of
(1). Related work is carried out by Ivanova et al. [4, 5, 6] who report re-
sults of group classification of various versions of nonlinear diffusion-convection
equations. Numerous other papers have been devoted to group classification of
diverse differential equations. In particular, many classes of nonlinear evolution
equations depending on arbitrary functions of one, or at most two, variables
have been studied via this method [3, 9, 7, 8, 10, 11, 12, 13, 14, 15].

In the case of the equation under consideration in this paper, (1), we have
determined via the method of group classification that there are basically four
cases corresponding to r = +k and r = —14k in which equation (1) admits ad-
ditional symmetries. We have also constructed a number of invariant solutions
of the equation.

The paper is organised as follows. In Section 2, we introduce elements of Lie
symmetry analysis of differential equations. Group classification of (1) is done
in Section 3. In this section we determine all the instances depending on r and
k when the principal Lie algebra of (1) is extended. In Section 4, we construct
adjoint representations of the symmetry Lie algebras of (1) corresponding to all
the instances when the equation admits additional symmetries. Furthermore,
we compute corresponding optimal systems of admitted one-dimensional sub-
algebras and perform symmetry reductions of (1). Finally, we give concluding
remarks in Section 5.

2. Preliminaries

Lie symmetry analysis is one of the most powerful methods for finding analytical
solutions of differential equations. It has its origins in studies by the Norwegian
mathematician Sophus Lie who began to investigate continuous groups of trans-
formations that leave differential equations invariant. Accounts of the subject
and its application to differential equations are covered in many books (see, for
example, [21, 22, 23] for an introduction and [18, 19, 20, 17] for a more detailed
exposition). Central to methods of Lie symmetry analysis is invariance of a
differential equation under a continuous group of transformations. Consider a
one-parameter Lie group of point transformations

P o= xz4eb(x tu)+0(E?)
t = t4er(z,t,u)+ O(?) (3)
o = u+en(ztu)+ O0(E?)
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depending on a continuous parameter €. This transformation is characterised
by its its infinitesimal generator,

X = o t,w)d, + 7, t,u)ds + (. t,u)d. (4)

A general (1 + 1) partial differential equation with a dependent variable v and
independent variables (z,t),

A, b Uy Uy, Uty Uy Uty Ug) = O (5)
is invariant under (3) if and only if
XPA=0 when A=0, (6)
where X@ is the second prolongation of X given by

X®=x 4+ ngl)ﬁui +n% o

1119~ Wiyig?

iluiQ - 1727 (7)
with
1 i 2 .. .
775 ) = DZT/ - (szj) Uy 771(11‘)2 = DZ2T/Z(1 ( 225 )uilja L, ) = 1>27 (8)

2 .
where u; = %7 Wiy = (%?1%7 1,15 = 1,2, (1‘1,1}2) = (z,1), (51752) = (&)
and D; denotes the total differential operator with respect to x*:

0 0 0 0

axi—i_ “ou ""Uwa +ka8]k+”’ 9)

D; =

The Einstein summation convention is adopted in (7), (8) and (9). The invari-
ance condition (6) yields an over-determined system of linear partial differen-
tial equations (determining equations) for the symmetry group of equation (5).
The infinitesimals &, 7 and 7 are then determined as a general solution to the
determining equations. If the infinitesimals contain more than one arbitrary
constant, the resulting multi-parameter infinitesimal generator is split into sin-
gle parameter generators, which constitute a basis for the symmetry Lie algebra
of (5).

When equation (5) has arbitrary elements (parameters and/or functions)
the nature and dimension of the admitted symmetry Lie algebra typically de-
pends on these arbitrary elements. For many equations modelling natural phe-
nomena it is desirable that they possess non-trivial symmetry. This is because
in such cases it is possible to obtain a lot of information about solutions of
the equation, including reduction of multidimensional equations to ordinary
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differential equations, constructing classes of exact and approximate solutions.
Furthermore, mathematical models must be of such a form that they are con-
sistent with important natural principles of physics such as conservation laws
of energy, momentum, etc. It turns out that this beauty of equations of math-
ematical physics is often encoded in the symmetries admitted by the equation
Fushchych [24]. From this point of view, therefore, we seek to specify the arbi-
trary elements in the equation in such a way as to increase the dimension of the
admitted symmetry Lie algebra. This is the essence of the group classification
method. Seminal work on group classification was done by Sophus Lie [25] (see
also Ovsiannikov [19]) who investigated linear second-order partial differential
equations (PDEs) with two independent variables. For a more detailed account
of the method of group classification of differential equations the reader is refer-
eed to Gazizov and Ibragimov [16] and Olver [17] (and the references contained
therein).

3. Lie point symmetries of the STM-NFP equation

Clearly, when r = —1/2 and k = +£1/2 equation (1) is reduced to a first-order
linear equation and therefore admits an infinite dimensional Lie algebra. These
cases will not be considered. For other values of the parameters, suppose

X =&(x,t,u) 0y + 7(x,t,u) Oy + n(x,t,u) Oy, (10)

where &, 7 and 7 are arbitrary functions, is admitted by Equation (1). The
invariance condition

ou 0 0? r+k r—K
2)“> < - v I4r (0 TNk —K
X {815 8x(xu) QE?J:Q [u < ok 2k )]}

where X?) is the second-prolongation of X defined in (7), translates in the the
usual way into the following system of determining equations, thanks to the
handiness of Mathematica [26]:

—0, (11)
(1)

§u =0, (12)
Tu =0, (13)
Te = 0) (14)

Et&—abran—2(k—r)u " o=k N

+2 (K +7) w e ok, m)Ne — u " o(=k, 1) (Eaz — 2N2u)
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— T 90('%7 T) (ga:a: - 277$u) =0, (15)

ntur—m —uny+xn, +u " e(—K,7) N
+ utr 90('%’ T) Nze = 0, (16)

n(r+r—1) (k+7) """ Lok, r) +nu " I(k, )
+ [(T —R) U o(—k, ) + (k+ 1) U o(k, r)] (e + 1y —2&)

ST (e Qul="t Y9 (k,7) B
(e ) + T ), (1)
n(r—r) W o(=k,r) 0 (k+7) W (k)
—u" T (k1) (2& — ) —uTT (K, 7) (26 —7) =0, (18)
where
o) = Q (H+T)2(; —I—,%—i—r)7
Q [1 — (k= T‘)Z] (k — T‘)2
(K, T) 5 .
From the equations (12)—(14) and (18), we obtain that
§(x,t,u) = £($7t) (19)
T(z,t,u) = 7(t) (20)
2K /
ot LEem ) el @6 =) o

(r—r)o(—r,r) + (K + r)p(k,r)u2r’

The outstanding equations, (15)-(17), are now expressed in terms of and solved
for £ and 7. Equation (17) in particular becomes

[ (1, ) + 0P o, 1) + 0 4y (7)) [ = 28]

=0, 22
¢0(’<ﬂ, T, U) ( )
where / denotes the differentiation with respect to t, and
2 2 2k]3
vy = [(H—T—l)(/ﬁi—?”) +(k+r) (I+k+7r)u ]

U = 26 (142K) Q-7 1 —k+71)?



SYMMETRY REDUCTIONS AND INVARIANT SOLUTIONS... 811

X [m4+r2(1+r)2—m2 (1+2r+2r2)]
Yo = 4KQ [54—1—7"2(1—1—7”)2—52 (1—1—27“—1—27“2)}
x[r3(1+r)2—2m6+/€4 (2457 +47?)
—527”(1—1-47”—1—67“2—1-21”3)}
Yy = 26(2k—1) Q471 (1 +r+7)?
X |:I£4—|-7‘2(1—|-T‘)2—I£2 (1+2r+2r2)].

Clearly equation (22) is solved if and only if ¢y(k, 7, u) # 0 and
' —2¢ =0, (23)

or
"y (k1) + udrtT Yok, ) + laand Y3(k,r) = 0. (24)

In the light of (19)—(21), the solution of (23) together with (15) and (16) leads
to

E=ciel, T=¢g, 7n=0, (25)
from which we obtain the infinitesimal symmetry generators X; and Xs in
(2). This means that the principal Lie algebra of (1) is spanned by X; and
Xo. Instances in which (1) admits additional symmetries are obtained from
solutions of (24). Solving this equation for r, by setting ¥ (k,r) = ¥a(k,7) =
Y3(k,r) = 0, we obtain

r=xk or r=-1xk. (26)

We consider each of these cases in turn to determine symmetries admitted by (1)
in these instances. This essentially means solving the outstanding determining
equations (15) and (16) for £ and 7. For each of the parameter specifications
in (26) the symmetries admitted by (1) include X; and Xy specified in (2).
Additional ones are admitted in the various cases as presented below in Table 1.




812 W. Sinkala

Table 1: Symmetries of Eqn (1) in the Cases r = £k and r = —1+k,
with 0 in Case C defined by (27).

2
(i) r=k k=—3
2
Specifications (i) 7r=—r K= 3
of r and _ 1
(iii) r=—-1+r, Kn=—5
(iv) r=-1-kK, k=%
Case A X, =0y, Xy=et,
Admitted X3 =e 23 (20, — 0y —udy)
infinitesimal
generators Xy=zel (0, —3ud,)
X5 :xax —8t - %u@u
( (i) r=k, k=-1
Specifications (i) 7r=—r r=1
of r and k 1
(ili) r=—-1+kK, Kk=—3
[ (iv) r=-1—kK k=3
Case B X = 8. Xo—ecto
Admitted PO !
infinitesimal X3 =20, — 0 — u0y,
generators 1
X4 :txax—tat—u(t+§) 8u
(i) r==k, k¢ {—%,—%,—1}
.o o 1 2
Specifications (i) r=-x r¢ {531}
ofrand k1 (i) p— 14k ke {+L, -1}
(iv) r=-1-k, k¢ {£3, ¢
Case C X =9, Xo—etO
Admitted R !
infinitesimal X5 = e 2(1+0)t (x0p — 0 —u0y)
generators
X4 = x&x - 8t + (u/é)&u
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Table 2: Commutator table for Case A.

X, X;] | Xu X X3 X4 Xs
X1 0 X, —2X3 Xy 0
X X 0 0 2(X1+X5) 0
Xs | 2X3 0 0 0 —2X;3
Xy | —-Xy4 —2(X1+X5) O 0 0
X5 0 0 2 X3 0 0

Table 3: Commutator table for Case B.

X X | X1 Xo X3 X4

X1 0 —Xo 0 X3
X2 X 0 0 0
X3 0 0 0 —Xj
Xy —X3 0 X3 0

Table 4: Commutator table for Case C, where § = k, —k, /1—%, —H—%
in the specifications (i), (ii), (iii) and (iv), respectively.

(X, X;] X3 Xy X3 Xy
X 0 “Xo —2(1+68)Xs 0
X X 0 0 0
X3 | 20+8)X; 0 0 —2(1 + 6)X;
X, 0 0 201+0)X; 0

The commutator tables for the corresponding Lie algebras are given in Ta-
bles 2, 3 and 4.
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4. Invariant solutions of the STM-NFP equation

Each of the infinitesimal symmetry generators admitted by (1) can be used to
construct a family of invariant solutions of the equation. A function u = O(z,t)
is an invariant solution of (5) arising from X if it is a solution of (5) and satisfies
the invariant surface condition,

X (u—0(z,t)) =0 when u=0(z,t). (28)

The construction of invariant solutions proceeds in a very algorithmic fashion.
For each infinitesimal symmetry generators X, one determines from solutions
of the associated corresponding system,
de dt du
T-2-% (29)
& T
two independent invariants r(z,¢,u) and v(z,t,u) (with v, # 0) of the associ-
ated group. The form of the invariant solution arising from X is now obtained
from v = F(r) or
u=0(zr,t) (30)

when solved for u. Upon substitution of (30) into (5) we obtain an ODE that
defines ©, the solution of which completes the construction of the invariant
solution.

To avoid “duplicating” invariant solutions we determine optimal systems (in
the usual way Olver [17]). For each of the Lie algebras represented in Table 1,
we construct an adjoint representation of the underlying Lie group via the Lie
series

Adj(exp(in))Xj = Xj — E[XZ‘,XJ‘] + %52[)(2'7 [X’MX]]] — Ty (31)

where [X;, X;] is the Lie bracket of X; and X;. For the cases identified in
Table 1 the adjoint representations are presented in Table 5, Table 6 and Ta-

ble 7 for Cases A, B and C, respectively, where the (i,j)-th entry indicates
Ad (exp(eX;))X;.

Woy(X1...,X5) = Xo+ Xy —2e(X1 + X5), (32)
Uyo(X1..., X5) = Xo+e2Xy+2e(X1 + X5). (33)
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Table 5: Adjoint representations for Case A, where ®;;(-) are defined
in (32) and (33).

Adj X1 Xo X3 X4 X5
X1 X1 €Xy €3EX; e €Xy X;
Xo | Xi—eXo Xo X3 Uou(") X;
Xs | X1 —3X5 X X3 Xy Xs+3 X5
Xy | Xi+eXs Up() X X, X;
X; X, Xo e 3%X; Xy X;

Table 6: Adjoint representations for Case B.

Adj X, Xy X X,
X, X, Xy Xy Xi—eXs
X X1 —eXy Xo X3 Xy
X3 X1 Xo Xz  Xu+eX;
X Xi+(1-eXs Xo e€X3  Xa

Table 7: Adjoint representations for Case C.

Adj X X5 X3 X4
X X e€Xy 2(F9eX, X4
X5 X1 —eXo X X; Xy
X3 | X1 -2(14+6)eXs Xy X3 X4 +2(1+0)eX3
X4 X, X, e 20+d)ex, X4

Following Olver’s approach [17], we use the adjoint representations to iden-
tify equivalent infinitesimal symmetry generators. It turns out that every in-
variant solution of the STM-NFP equation can be obtained from an invariant
solution constructed from one of the elements from the optimal systems pre-



816 W. Sinkala

sented in Table 8.

Table 8: Optimal system of one-dimensional subalgebras of the STM-
NFP equation; «, 8 and ~y are arbitrary constants.

[ ﬁX2+X4+’YX5 [ ] OzX1+X4
Case A | o aX;+B8Xe+ Xy Cases A& B| o aX;+ X3
[ ] Xl ® X1

Invariant solutions of (1) arising from the representative infinitesimal sym-
metry generators in the optimal systems represented in Table 8 are obtained in
the usual way.

1. Case A.
e Xo+ Xy +vX5
u(z,t) = % (1+22e2/8) Ty (O), (34)

= VBt/y+tan™ ('a/\/B), By#0,

where

18825y +987y5 +207Q [Byy’ —9y° —4(/)?] = 0. (35)

with
1 for Parts (i) and (ii),
) () and (i) )
4 for Parts (iii) and (iv).
o aX| + Xy + Xy
8 3 3 3(1—w)t —1)—9 ¢
(. t) = a’w’e” 2 y(C ¢ = a(w-—1) elx (37)

[Qetx—l—a(l—i-uJ)]B’ w2etz + a(l +w)]ewt’
where

18w Cysy +pys +20Q[4())2 —3yy"] =0,  (38)
with 0 as defined in (36), and

w=+1-48/a2, a®>—46>0 and p=9c’w!(Bw—-1).
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e X
u(xvt) :y(g)a ¢ =u,
where y is a solution of the ODE

1Q () —3Qyy" +9Cyiy + 9y =0.

2. Case B.
e aXi+ Xy
1
U(l‘,t) :et (t_a)a+2 y(C)a C:et (t_a)ax>
where
200 [yy" —2W)*] +2aCy®y + (1 +2a) y* = 0.
with
0 1 for Parts (i) and (ii),
2 for Parts (iii) and (iv).
o X+ X3 . .
u(z,t) = et y((), (=eT-oux,
where

092 (a—1)[2(5)° —yy"l +aly' +(yPy) =0
with 6 as defined in (43).
[ ) Xl
u(z,t) = y(z),
where
0Q[yy" —2(/)?] —2y’y —y' =0,
with 6 as defined in (43).
3. Case C: (i) & (ii) [0 = & for (i), 0 = —k for (ii)]

o X+ Xy

where
y Ny—dacy] —Qiwy®® [yy’' +26 ()] =0,

with
w=(a—1) (1+26), A=14+61-a).

817

(46)

(47)

(48)

(49)
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o Xj+X3
' y(¢) e x
u($7 t) = F) = T
(62 (14+0) ¢t _ 1) 2(1+9) (62(1+6)t _ 1) 2(1+9)
where

Y24+ (1+268)y* [yy” +2(y)? 0] +Cyy =0.

e X
u(m,t) = y(x),

where
O (14206) y?°! [yy"+25(y')2] +xy +y=0.
4. Case C: (iii) & (iv) [0 = & for (iii) & 6 = —k for (iv)]
o aX; + Xy

where
ny1+25y/l+Qy2y25(y/)2+Mcy2y/+wy3:0’

with
w=1l+—w— v=2§-—1

P+ Qe () — Qpy' 0y + Py =0, p=1-20

u(xvt) :y(g)a ¢ =z,

where y is any solution of (57).

(51)

(52)

(53)
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5. Concluding remarks

In the work reported in this paper we have carried out complete group clas-
sification of the STM-NFP equation and thereby identified all “interesting”
particular cases of the equation. We have established that when » = —1/2 and
k = £1/2 the STM-NFP equation is reduced to a first-order linear equation and
therefore admits an infinite dimensional Lie algebra. For all the other param-
eter specifications, the equation admits a two-dimensional Lie algebra spanned
by the symmetries X; and X stated in (2). This is the principal Lie algebra of
the equation. Extensions of the principal Lie algebra occur only if r = 4+ or
r = —1+x. We have identified all the different scenarios under which the admit-
ted Lie algebra extends. The corresponding parameter specifications possibly
define particular interesting entropies associated with the STM-NFP equation.
In each of these instances the equation is endowed with remarkable physical
properties and is amenable to solution via routines of Lie symmetry analysis.
As such, we have performed symmetry reductions of the STM-NFP equation
in all such cases, limiting our calculations to essentially different infinitesimal
symmetry generators, i.e. those not connected by means of a Lie point transfor-
mation of the equation. To do this we have constructed adjoint representations
of the symmetry Lie algebras of the STM-NFP equation corresponding to all
the instances when the equation admits a nontrivial symmetry Lie algebra. Us-
ing the adjoint representations, we have determined one-dimensional optimal
systems of Lie algebras of the STM-NFP equation and used them to perform
symmetry reductions of the equation. We have thereby characterised practi-
cally all invariant solutions of STM-NFP equation by second-order ODEs. Our
results have revealed new possibilities for analytical and numerical studies of
the equation.

Acknowledgements
The author would like to thank the Directorate of Research Development and
Innovation of Walter Sisulu University for continued financial support.

References

[1] D. Caldas, J. Chahine, E.D. Filho, The Fokker-Planck equation for a
bistable potential, Physica A, 412 (2014), 92-100.



820

2]

[11]

[12]

W. Sinkala

A .M. Scarfone, T. Wada, Lie symmetries and related group-invariant solu-
tions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-
Mittal entropy, Braz. J. Phys., 39, No 2A (Aug. 2009).

C.M. Yung, K. Verburg, P. Baveye, Group classification and symmetry re-
ductions of the non-linear diffusion-convection equation u; = (D(u)uy), —
K'(u)ug, Int. J. Non-Linear Mech., 29 (1994), 273-278.

N.M. Ivanova, R.O. Popovych, and C. Sophocleous, Group analysis of vari-
able coefficient diffusion-convection equations: I. Eenhanced group classi-
fication, Lobachevskii J. Math., 31, No 2 (2010), 2100-122.

N.M. Ivanova, C. Sophocleous, On the group classification of variable-
coefficient nonlinear diffusion-convection equations, J Comput Appl Math.,
197, No 2 (2006), 322-344.

R.O. Popovych, N.M. Ivanova, New results on group classification of non-
linear diffusion-convection equations, J. Phys. A: Math. Gen., 37 (2004),
7547-7565.

0.0. Vaneeva, A.G. Johnpillai, R.O. Popovych, C. Sophocleous, Group
analysis of nonlinear fin equations, Appl. Math. Lett., 21 (2008), 248-253.

0.0. Vaneeva, R.O. Popovycha, C. Sophocleous, Extended group analysis
of variable coefficient reaction-diffusion equations with exponential nonlin-
earities, J. Math. Anal. Appl., 396 (2012), 225-242.

N.M. Ivanova, C. Sophocleous, R. Tracina, Lie group analysis of two-
dimensional variable-coefficient Burgers equation, Z. Angew. Math. Phys.,
61, No 5 (2010), 793-8009.

B. Muatjetjeja, C.M. Khalique, F.M. Mahomed, Group classification of
a generalized Lane-Emden system, J. Appl. Math., 2013 (2013), Art. ID
305032, 12 pp.; doi:10.1155/2013/305032.

O. Patsiuk, Lie group classification and exact solutions of the generalized
Kompaneets equations, Electron. J. Diff. Fqu., 2015 (2015), , No 112,
1-15.

Y. Bozhkov, S. Dimas, Group classification of a generalized Black-Scholes-
Merton equation, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014),
2200-2211.



SYMMETRY REDUCTIONS AND INVARIANT SOLUTIONS... 821

[13]

[14]

S.K. El-labany, A.M. Elhanbaly, R. Sabry, Group classification and sym-
metry reduction of variable coefficient nonlinear diffusion-convection equa-
tion, J. Phys. A: Math. Gen., 35 (2002), 8055-8063.

R.Z. Zhdanov, V.I. Lahno, Group classification of heat conductivity equa-
tions with a nonlinear source, J. Phys A: Math. Gen., 32 (1999), 7405—
7418.

W. Sinkala, P.G.L. Leach, J.G. O’Hara, Invariance properties of a general
bond-pricing equation, J. Differential Equations, 244 (2008), 2820-2835.

R.K. Gazizov, N.H. Ibragimov, Lie symmetry analysis of differential equa-
tions in finance, Nonlinear Dynam., 17 (1998), 387-407.

P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-
Verlag, New York (1993).

G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-
Verlag, New York (1989).

L.V. Ovsiannikov, Group Analysis of Differential FEquations, Academic
Press, New York (1982).

G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of Symmetry
Methods to Partial Differential Equations, Springer, New York (2010).

B.J. Cantwell, Introduction to Symmetry Analysis, Cambridge University
Press, Cambridge (2002).

P.E. Hydon, Symmetry Methods for Differential Equations: A Beginner’s
Guide, Cambridge University Press, New York (2000).

H. Stephani, Differential Equations: Their Solution Using Symmetries,
Cambridge University Press, New York (1989).

W.I. Fushchych, Symmetry analysis, In: W.1I. Fushchych, Scientific Works,
Kyiv (Ed. V.M. Boyko), W.I. Fushchych, Scientific Works (2002), 413-414.

S. Lie, On integration of a class of linear partial differential equations
by means of definite integrals, In: CRC Handbook of Lie Group Analysis
of Differential Equations (Ed. N.H. Ibragimov), CRC Press, Taylor and
Francis Group, Boca Raton (1994), Vol. 2, 473-508.



822 W. Sinkala

[26] Wolfram Research, Inc., Mathematica, Version 8.0, Wolfram Research,
Inc., Champaign, Illinois (2010).



