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Abstract:  This work shows for the first time the viability of using the
Bayesian paradigm for both estimation and hypothesis testing when applied
to fractional differential equations. Two distinct fractional differential equation
models were explored using simulated data sets to determine the performance
of the Bayesian inferential methods across values of a (the fractional order) and
o (the experimental error variance). This inferential paradigm shows promise
as it has robust estimation, predictions and provides for hypothesis testing to
determine whether a fractional process is warranted by the data. A simulation
study, applied to a fractional transport system in porous media, demonstrates
the robustness of the estimation and the sensitivity of the hypothesis tests to
various levels of o and 2.

Received: May 18, 2020 (©) 2020 Academic Publications

§Correspondence author




784 E. Boone, R. Ghanam, N. Malik, J. Whitlinger

AMS Subject Classification: 35R11, 35C05, 35C10, 35E15, 35G25, 65M15,
65G99

Key Words: Bayesian estimation; validation; modeling error; analytical
approximate solution

1. Introduction

Many physical systems are modeled by partial differential equations, [1] and
[2]; applications of such equations arise in many fields, such as, atmospheric
chemistry, [3], modeling of fluid flow in homogeneous media, [4], combustion,
[5], and porous media [6]. In a single-phase system, let us denote the scalar
(typically the concentration) by p(z,t) at the position z and at the time instant
t, and let the scalar be transported by the velocity field u(z,t), and by diffusion
due to gradients in c(x,t) and the fluxes across the boundaries of the region.
Many different types of advection-diffusion arise in different systems. One such
system arises in application to flow of gas in porous media, such as shale rocks.
Here the system is described by the advection-diffusion equation,

WD) U5 o)) = 2 (DI ). m

where U is the convective velocity, and D is the diffusivity is the non-linear
diffusion flux, see [6].

But there are many phenomena in nature which are not described ade-
quately by these models. Among them are crowded systems, such as protein
diffusion within cells, [7], and diffusion through porous media, [8]. Here frac-
tional differential equations sometimes provide a better description, see [9], [10].
Though fractional calculus (FC) has a long history, going back 300 years, its
application in many fields of science and engineering is relatively new [8]-[18].

A fractional differential equation contains a fractional derivative in at least
one of its terms. For example, a fractional diffusion equation reads,

o o olta o?

g (9°) = P_ 4 (2L2)) (2)

ot> \ ot otl+e dz?
where 0% /0t* represents the Caputo derivative and A is the pseudo-diffusivity
defined in [19]. Fractional calculus methods have the ability to represent non-
Gaussian continuous time random walk (CTRW) statistical processes [20], [21]

which leads to so-called anomalous diffusion, see Metzler and Klafter [22]. It is
possible to apply a spatial fractional derivative, discussed in [23].
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Our interest in this paper is in estimation and hypothesis testing applied to
fractional fluid transport models. We will study a generalization of equation (1)
to a factional advection-diffusion equation with the Caputo derivative applied
to the time derivative,

o°p(z,t) 0 <D(p)a_p

dp
— o = s a$>—U(p,px)a—$, x>0,t>0, (3)

where p(x,t) is the pressure in tight gas reservoir.

Bayesian statistical methods have been developing rapidly for the last 40
years due to the advent of fast computing. As opposed to Frequentist methods
such as Method of Moments [35] or Maximum Likelihood [36] which obtain
information only from the data, Bayesian methods consider incorporating all
sources of information including the data and any information available prior
to experimentation. In the presented context, one has prior information about
a, namely 0 < a < 1. All prior information should be incorporated into a
prior probability distribution so that any uncertainties about « are reflected.
Using the prior probability distribution with the Likelihood of the data one can
obtain a posterior probability distribution via Bayes’ theorem. Since posterior
probability distributions are typically not analytically tractible, sampling tech-
niques such as Markov chain Monte Carlo (MCMC) are used to obtain samples
from the posterior probability distribution. All inferences are made using the
samples from the posterior probability distribution. For more on the Bayesian
framework and inferences, see [25],[26]

This work is important because it establishes the viability of using the
Bayesian paradigm for both estimation and hypothesis testing when applied to
fractional differential equations. This work is significant also because we have
not found any previous publications directly in this field, although [27] report
work in a related field where they focus only on using the Bayesian technique
to estimate the fractional order in a growth model and only through time. As
such, the work reported here can be considered pioneering as it brings together
fractional partial differential equations and statistical techniques for the first
time.

The remainder of this work is organized as follows. Section 2 gives the prob-
lem statement, model definitions and statistical model. A simulated example is
given in Section 3 to illustrate the methodology in a single case example. This is
followed in Section 4 by a large scale simulation study on the robustness of the
estimation procedure across a variety of « and o2 specifications. The details of
conducting hypothesis tests are presented in Section 5 with a simulation study
illustrating the sensitivity of the hypothesis test to varying values of a and o2.
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And finally in Section 6 a discussion of the results are given as well as some
issues for future work in the area.

2. The problem statement

We will focus on two particular time-fractional advection-diffusion systems
given by (3), [24], [6]. Our task is to provide inference on such parameters for
the fraction and the experimental error variance using the Bayesian framework.
We will explore two systems which are relevant to applications in transport in

porous media,
pe = J:(D]) U<]>, t>0, >0 (4)

In order to estimate the fractional parameter o and the experimental error
variance o2 we will use a likelihood approach, namely the Bayesian framework,

hence a likelihood needs to be created as:

Y (i, ;) = p(xis ty)e(wi, b)), (5)

where Y (z;,t;) is the stochastic process with mean p(x;,t;) at location x; and
time ¢;. In this case the experimental error €(z;,t;) will follow some appropriate

probability distribution with variance o2.

2.1. Models

Model 1.
The first model that we consider comes from equation (3) where we take D = 1
and U = 1 and the initial condition is p(x,0) = e~ “*, (¢ > 0), and the boundary
condition is p(z,t) — 0 as x — oo. This yields the linear system
p _&p p
— = - = t>0, z>0. 6
ote  0x2  Ox’ o (6)
For this work we will assume ¢ = 1 for simplicity. In this case p(x,t) has
a closed form solution under some mild conditions given by a Mittag-Leffler

function:
tak

Z()I’ak:—l—l (7)
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Model 2.

The second model that we consider comes from equation (3) where we take
D(p) = % and U(p, p;) = %%, with the initial condition p(z,0) = e~ *, and the
boundary condition p(z,t) — 0 as x — oo. This yields the non-linear system

op _ 0 (1op\ 1 (op\’ (8)
ot Oz \ pox oz ) -

In this case p(z,t) has a closed form solution under some mild conditions
which is given again by a Mittag—Leﬂer function:

ZI‘ak—l—l t>0, z>0. (9)

The main parameter in this model is «, the fraction of the derivative, and
is bound between 0 and 1. If & = 1 then no fractionation is needed.

2.2. Statistical model
A Bayesian approach is used to estimate the parameters in the model which

requires that both a likelihood be specified as well as prior distributions on the
model parameters. For Model 1 the following likelihood model is specified as:

Y t t t T N 2t?k t 10
(xza ])_p(xza J)E(mza J) = |€ ];)m 6(752» ])' ( )

And similarly, Model 2 has the following likelihood model specification:

00 — 1«
Y(l‘i,tj) :p(xi,tj)e(xi,tj) = e_ifi Z % E(in7tj), (11)
k=0

where €(z;, ;) w LogNormal(1,02). Here the LogNormal likelihood is chosen
to ensure that pressure is always a positive value. Let y(z;,t;) be the observed
value of Y (z;,t;) where i = 1,...,n,; and j = 1,...,n;. In this specification,
the likelihood has two parameters, o and 2. The prior distribution for o and
o2, w(a,0?) are specified as a ~ Beta (a*, %) to reflect the prior knowledge
that « is bound between 0 and 1. For ¢2 the prior distribution is specified as
02 ~ x2(df) to reflect the prior knowledge that o? must be a positive value.
For more on prior distribution and selection, see [25].

For notation, let x be all x; values and t be all the values of t; and y(x, t) be

all the corresponding values of y(x;,t;) observed and p(x,t) be all the solutions
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at the corresponding values. The posterior distribution 7 (a, o?|p(x,t), y(x, t))
can be found using Bayes’ Theorem [34]:

m(a, 0®)L(y(x, t)|p(x, t), @, o)
m(a, 0?) L(y(x, t)|p(x, t), a, 0% )dado?’

T (a,a2|p(x,t),y(x,t)) = f (12)

In the case considered here there is no analytic solution to
m (e, 0% p(x, 1), y(x, 1)) ,

and hence sampling method must be employed to draw samples from the poste-
rior distribution, from which all inferences will be made. There are many choices
for the algorithm to sample from the posterior distribution such as Acceptance
Sampling, Metropolis-Hastings Sampling, Sampling Importance Resampling,
etc. For more on sampling algorithms see [28], [26], [29].

3. Simulated examples

Suppose the system of interest is given by (4) where a = 0.82. Further sup-
pose that data for y(x,t) has been observed, with noise, at all combinations of
ny, = 31 equally spaced levels of x from 0.01 to 10 and n; = 11 equally spaced
times t from 0.5 to 1.5 and the noise is multiplicative following a LogNormal
distribution with mean 1 and ¢ = 0.1. Figure 1 shows the unperturbed data
surface in panel (a) and the perturbed data surface in panel (b). Notice that
this set parameter specification produces a quite noisy surface. Similarly for
the system given by (4) the unperturbed surface is in panel (c¢) and perturbed
surface in panel (d). In real world situations we would expect to observe per-
turbed data similar to those in panel (b) and (d). The goal of this work is
to determine if statistical techniques can be used to adequately estimate the
parameters of the underlying surface when presented with noisy data.

The prior distributions for o and o were specified as follows for both Model
1 and Model 2:

a ~ Beta(3,3),
o’ ~ x*(1).

Using the LogNormal likelihood, the prior above and Bayes Formula the pos-
terior distribution is given as:

7 (a,oly(wi, 1), p(@i ) o a® (1= a) (o?)F/ 2 e /2
% e 207 ity gty (ny(@inty) —p(wint;)?
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(a) (b)

Figure 1: Model 1 ( (4)) with no noise (a), a = 0.82 and with noise
o = 0.1 (b) and Model 2 ( (4)) with no noise (c), & = 0.82 and with
noise o = 0.1(d).

ng Nt

X U_nr_ntHHy(xi’tj)_l (13)
i=1j=1

= o’(1—a)(e?) e /2

X e_#z?zzl T (Iny(aisty)—p(wits))?
Ne Nt

X g Memm H H y(xi, b))t

i=1j=1

The Sampling Importance Resampling algorithm was employed with 10,000
candidate samples with 1,000 posterior samples drawn. The sampler generated
a posterior sample of 89.8% unique samples indicating a high quality sample
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from the posterior distribution. Histograms of the posterior distributions of «
and o can be found in Figure 2, which shows the true values a = 0.82 and
o = 0.1 in the middle of the distribution. For reference, the 95% posterior
credible intervals were generated by taking the 2.5% and 97.5% quantiles from
the marginal posterior distributions. This procedure gave parameter estimates
for Model 1, «a, (0.8169,0.8226), which contains the true value 0.82, and for o,
(0.0907,0.1050), which also contains the true value of 0.1. Similarly for Model
2 the credible interval for a is (0.8020,0.8389) and for o, (0.0928,0.1083), both
of which contain the true values. This this gives preliminary evidence that the
procedure may be able to adequately estimate the model parameters.

Not only can the method proposed be used to estimate the fraction of the
differential equation, it can also be used to quantify the prediction uncertainty
associated with the model and parameter estimates. To do this the posterior
predictive distribution can be employed to generate a distribution for a new
observation p(Zpew,tnew) at the value of e and . Recall, the posterior
predictive distribution is given by:

™ (p(x", ) |y(x, t), p(x, 1)) = /ﬂ(a,UZIy(X,t),p(th))

L(p(z*,t*)|y(x, %), p(x, t), o, 07)
x dado?. (14)

X

Across the domain of the inputs profile plots are created of the median sur-
face, the surfaces generated by the 2.5% and 97.5% quantiles for given values of
t and given values of x along with the data. Figures 3 and 4 give these profile
plots for x and t, respectively for both Model 1 and Model 2. Notice that the
posterior predictive intervals capture most of the observed data. This gives
evidence that the modeling approach is properly quantifying the uncertainties
associated with both estimation as well as inherent noise in the data. Further-
more, since the predictive intervals performance is similar across Model 1 and
Model 2, this is another piece of evidence that the approach may be viable
across a wide variety of fractional differential equations.

4. Robustness in estimation

In order to determine if the approach proposed for estimating « is robust to
the value of o in the underlying process a robustness analysis was conducted
for varying values of o and o. To study this new datasets were simulated
using each combination of o = 0.1,0.25,0.5,0.75 and 0.9 and ¢ = 0.01,0.1
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Figure 2: Histograms of the marginal posterior distributions for
Model 1 of « (a) and o (b) and for Model 2 of « (c) and o (d).

and 0.25. A total of 200 datasets were simulated for each (o, o) combination
and using the Metropolis Sampler 1,500 posterior distribution samples were
generated from which ht first 500 sample were discarded as “burn in”. The
remaining 1,000 samples were used to make inferences about the parameters by
calculating a posterior credible interval using the 2.5% and 97.5% quantiles of
the samples for each parameter. The overall coverage probability was calculated
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(a) (b) (c)

Prossure when x=0.1 " Pressurs when x= 1 25210° Prossure whon x= 10

Figure 3: Profiles of predictive distribution for Model 1 with 95%
predictive intervals across t. Data values (o), median (—), Q2.5 and
Qo975 (— - —). Panels (a), (b) and (c¢) correspond to Model 1 pro-
files when = = 0.1,1.0 and 10, respectively. Panels (d), (e) and (f)
correspond to Model 2 profiles when = = 0.1, 1.0 and 10, respectively.

for each parameter combination, Coverage(a)) and Coverage(3). Similarly, for
each (a,0) combination the mean width of credible interval, Width(a) and
Width(o) was calculated.

Table 4 shows these results for Mlodel 1 and Table 4 shows the results for
Model 2. The results for both Model 1 and Model 2 show quite narrow
interval widths relative to the parameter size. For example, in Model 1 when
a = 0.25 and ¢ = 0.01 the width of the associated interval for « is 0.0005
and for ¢ is 0.0014. Also notice that as o increases the width of the intervals
for both a and o also increase, as expected. In Table 4 one can see that the
intervals for o are much wider when o is large compared for Model 2 to those
from Model 1. In terms of coverage probabilities, both Model 1 and Model
2 perform reasonably well with proportion of intervals capturing the true value
close to the preset 95% level. There are some lower results when o is large.
For example, in Model 1 when a = 0.9 and o = 0.25 the coverage probability
for a is only 0.865 and for Model 2 when a = 0.1 and ¢ = 0.25 the coverage
probability for « is only 0.870. Based on these results the estimation procedure



USING THE BAYESIAN FRAMEWORK FOR INFERENCE... 793

Figure 4: Profiles of predictive distribution for Model 1 with 95%
predictive intervals across x. Data values (o), median (—), Qa5
and Qg75 (— - —). Panels (a), (b) and (¢) correspond to Model
1 profiles when ¢t = 0.5,1.0 and 1.5, respectively. Panels (d), (e)
and (f) correspond to Model 2 profiles when = = 0.5,1.0 and 1.5,
respectively.

appears to be quite robust across reasonable parameter values.

5. Hypothesis testing

One important question that our approach can answer: “Is it worth using a
fractional differential equation model versus a traditional model?” Using the
Bayesian paradigm this problem can be framed as a hypothesis test on the
fractionation parameter « specifically:

L,
L.

ANl

Hy: «
H A
If « = 1, then there is no fractionation needed. If a < 1 then a fractionation
is needed and should be included in the model. From a statistics point of view
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Table 1: Average credible interval widths and coverage probabilities
for o and o for Model 1. All values based on 200 simulations.

« o  Width(e) Width(o) | Coverage(a) Coverage(o)
0.1 0.01 0.0002 0.0014 0.920 0.940
0.1 0.0027 0.0151 0.975 0.930
0.25 0.0066 0.0367 0.955 0.960
0.25 0.01 0.0005 0.0014 0.945 0.970
0.1 0.0053 0.0151 0.955 0.955
0.25 0.0129 0.0375 0.925 0.935
0.5 0.01 0.0011 0.0014 0.955 0.940
0.1 0.0107 0.0148 0.975 0.930
0.25 0.0229 0.0367 0.940 0.930
0.75 0.01 0.0016 0.0014 0.955 0.940
0.1 0.0156 0.0149 0.925 0.930
0.25 0.0299 0.0371 0.915 0.925
0.9 0.01 0.0019 0.0014 0.955 0.940
0.1 0.0180 0.0150 0.915 0.945
0.25 0.0312 0.0368 0.865 0.935

there are several approaches that could be used, such as likelihood ratio tests.
In this work, the posterior hypothesis probability approach will be used as it
is consistent with the previous Bayesian estimation approach. For notation
simplicity let D denote all the observed data so that D = {y(x,t)}. Since the
goal is to obtain a posterior probability for the hypothesis, Bayes’ Theorem
will be used with prior probabilities for each hypothesis denoted as P(Hy) and
P(H ), respectively which gives:

P(D|H4)P(Hp)
(D|Ha)P(Ha) + P(D|Ho)P(Ho)’

P(Ha|D) = D

where P(H 4|D) is the posterior probability of the alternative hypothesis, H 4,
given the data D and P(Hy|D) is the posterior probability of the null hypothesis
Hj given the data D. The marginal probability of the data under H 4 is denoted
P(D|H4) and is calculated as:

P(D|Hy) = /L(D\a,a, Ha)p(a,0H 4)dado,

where L(D|a,0,Hy) is the likelihood of the data given «,0 and
H, and p(a, 0|Hy) is the prior distribution of o, o under Hy4 [37]. Hypothesis
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Table 2: Average credible interval widths and coverage probabilities
for o and o for Model 2. All values based on 200 simulations.

« o  Width(e) Width(o) | Coverage(a) Coverage(o)
0.1 0.01 0.0010 0.0014 0.955 0.955
0.1 0.0117 0.0149 0.935 0.955
0.25 0.0544 0.0372 0.870 0.940
0.25 0.01 0.0059 0.0014 0.945 0.935
0.1 0.0579 0.0149 0.920 0.945
0.25 0.1313 0.0375 0.960 0.940
0.5 0.01 0.0049 0.0014 0.930 0.945
0.1 0.0492 0.0150 0.930 0.950
0.25 0.1051 0.0374 0.920 0.910
0.75 0.01 0.0040 0.0014 0.935 0.925
0.1 0.0395 0.0151 0.965 0.955
0.25 0.0895 0.0372 0.920 0.935
0.9 0.01 0.0034 0.0014 0.960 0.910
0.1 0.0335 0.0150 0.950 0.920
0.25 0.0775 0.0371 0.925 0.965

testing from this approach is different from the traditional frequentist approach
as there is no sampling distribution nor associated cut off value [38]. Instead,
the probability is easily interpreted with values near 1 indicating high proba-
bility and values near 0 indicating low probability. If H 4 is no better than H
then one would expect the P(H4|D) to be near 1/2. For more on Bayesian
Hypothesis testing, see [25], [26]

In testing the hypothesis & = 1, the prior distribution considered in Sec-
tion 2.2 will not work as the Beta distribution assigns P(a = 1) = 0. Hence, the
hypothesis is not well defined under this prior. Instead of using the traditional
Beta distribution, the one inflated Beta distribution will be used and is defined
as:

10) if =1,

: (15)
(1 — ¢)Beta(a*, 5*) if 6 € (0,1),

OIBeta(0|a*, 5%, ¢) = {
where Beta(a*, 5*) is the traditional Beta distribution with parameters a* and
B* and ¢ is the weight (mixing) parameter [39]. In this case, the weight pa-
rameter in the one inflated Beta distribution can be interpreted as the prior
probability of Hy. For this work the weight parameter will be set to ¢ = 0.5
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One Inflated Beta(3,3,0.5) One Inflated Beta(2,1,0.5)

08

0.8

06
0.6

04
0.4

02
0.2

0.0
0.0

0.0 02 0.4 0.6 08 1.0 0.0 02 0.4 0.6 08 1.0

Figure 5: Density plots of the One Inflated Beta(3,3,0.5) and One
Inflated Beta(2,1,0.5) distributions.

to reflect no preference for either hypothesis. Figure 5 shows the density plots
of OIBeta(3,3,0.5) and OI Beta(2,1,0.5), which will be used to examine prior
sensitivity. Notice that for the OIBeta(3,3,0.5) that the density is predom-
inantly in the middle of the domain with a spike at 1 and very low density
for values near 1. Hence, this low density may influence the hypothesis test.
Whereas, in the OIBeta(2,1,0.5) the density is increasing across the inter-
val from 0 to 1 with a spike at 1 as well. Notice that the density near 1 is
much higher than the spike at 1. This high density may influence the resulting
inferences.

To assess the sensitivity to prior distribution specification both OI Beta(3, 3,
0.5) and OIBeta(2,1,0.5) were considered. Figure 5 shows the density plots of
these two distributions. Notice that for the OIBeta(3,3,0.5) that the density
is predominantly in the middle of the domain with a spike at 1 and very low
density for values near 1. Hence, this low density may influence the hypothesis
test. Whereas, in the OIBeta(2,1,0.5) the density is increasing across the
interval from 0 to 1 with a spike at 1 as well. Notice that the density near 1
is much higher than the spike. This high density may influence the resulting
inferences.

A simulation study considers the distribution of P(H4|D) under values of
a € {0.95,0.96,0.97,0.98,0.99,1} and o € {0.01,0.1,025}. For each combina-
tion of @ and o parameter values 200 datasets were generated from both Model
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1 and Model 2 from each model and both the null model (o« = 1) and the alter-
native models were fit, respectively, using the MCMC algorithm outlined above.
For each of the Models and Hypotheses 1,000 posterior samples were obtained
after a burn-in of 500 samples. Under Hj the value of o was fixed at 0 and
hence not estimated, however, o was sampled using the same scheme as above.
Using the retained posterior samples the marginal probability of the data under
each hypothesis was calculated and P(H4|D) and P(Hy|D) were obtained and
recorded. This resulted in 200 posterior hypothesis probabilities for each pa-
rameter combination and the 2.5%, 50% and 97.5% quantiles of the P(H4|D)
were found. This was done for both OIBeta(3,3,0.5) and OIBeta(2,1,0.5) as
prior distributions.

Table 5 shows the results of the sensitivity study for Model 1 with the
quantiles for P(H 4|D) given under each parameter combination and both prior
distribution specifications. There are many items to note from this table. First,
notice that when there is low noise in the data ¢ = 0.01, when a = 1 (Hj true),
the quantiles for OIBeta(3,3,0.5) are near 1/2, indicating no preference for
either model. However, the quantiles for OI Beta(2,1,0.5) show a large range
of variability with some values around 0.8175 indicating it is likely that o < 1.
The table also shows fro ¢ = 0.01 that for values of a < 1, regardless of prior
distribution the analysis gives a posterior probability of 1 to H4. Hence the
prior distribution does have an impact on inferences when Hj is true. For
medium noise levels in the data o = 0.1 the OI Beta(2,1,0.5) prior distribution
specification seems to be more sensitive to values of & < 1 and is able to clearly
detect when o < 0.97 as evidenced by the 2.5% quantile being above 0.9. How-
ever, the OIBeta(3,3,0.5) prior distribution specification doesn’t seem to be
able to detect o < 1 until o < 0.96. Also notice for this specification the wide
variability in the posterior model probabilities when o > 0.96 indicating the
method has high uncertainty about the which hypothesis is more likely. For
high levels of noise in the data o = 0.25, the model with the OI Beta(3,3,0.5)
prior distribution is unable to consistently determine the more likely hypoth-
esis. Likewise, the model with OIBeta(2,1,0.5) as the prior distribution has
difficulty as well but performs better than the other specification. Table 5
shows very similar results in that Ol Beta(3,3,0.5) prior distribution seems to
produce considerable variability in the P(H4|D) for Model 2 when o is not a
small value. This seems far more pronounced in Model 2 than in Model 1.
However, the OIBeta(2,1,0.5) prior specification behaves as expected across
the spectrum « and o examined here.
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Table 3: Posterior Hypothesis Probability 2.5%, 50% and 97.5%
quantiles for P(H4|D) with varying levels of a and o for Model
1 where both OIBeta(3,3,0.5) and Ol Beta(2,1,0.5) prior distribu-
tions are considered. Quantiles are reported as (Qo.025, Qo.5, Q0.975)-

All values based on 200 simulated data sets.

OIBeta(3,3,0.5) OIBeta(2,1,0.5)

o o (Qo.025, Qo.5, Q0.975) (Qo.025, Qo.5, Q0.975)
0.01 1 (0.4579,0.5001, 0.5412)  (0.4655, 0.5965, 0.8175)
0.99 (1.0000 ,1.0000, 1.0000) (1.0000 ,1.0000, 1.0000)

0.98 (1.0000 ,1.0000, 1.0000) (1.0000 ,1.0000, 1.0000)

0.97 (1.0000 ,1.0000, 1.0000) (1.0000 ,1.0000, 1.0000)

0.96 (1.0000 ,1.0000, 1.0000) (1.0000 ,1.0000, 1.0000)

0.95 (1.0000 ,1.0000, 1.0000) (1.0000 ,1.0000, 1.0000)

0.1 1 (0.0016 , 0.4969 , 0.5159) (0.5101, 0.5838, 0.9093)
0.99 (0.0001 , 0.0057 , 0.8776) (0.5822, 0.8833, 0.9994)

0.98 (0.0062 , 0.7639 , 0.9999) (0.8599, 0.9983, 1.0000)

0.97  (0.5500 , 0.9999 , 1.0000) (0.9980, 1.0000, 1.0000)

0.96 (0.9994 , 0.9999 , 1.0000) (1.0000 ,1.0000, 1.0000)

0.95 (0.9999 , 1.0000 , 1.0000) (1.0000 ,1.0000, 1.0000)

0.25 1 (0.0015 , 0.4933 , 0.5292) (0.5151, 0.5876, 0.9066)
0.99  (0.0002, 0.0046 , 0.3826) (0.5242, 0.6800, 0.9909)

0.98 (0.0004 , 0.0102 , 0.8870) (0.5311, 0.7616, 0.9958)

0.97 (0.0017 , 0.1014 , 0.9928) (0.5992, 0.9310, 0.9997)

0.96 (0.0079 , 0.6234 , 0.9995) (0.6853, 0.9910, 1.0000)

0.95 (0.0364 , 0.8899 , 0.9999) (0.8621, 0.9990, 1.0000)

6. Discussion

This work has shown the viability of using the Bayesian paradigm for both
estimation and hypothesis testing when applied to fractional differential equa-
tions. T'wo distinct fractional differential equation models were explored using
simulated data sets to determine the performance of the Bayesian inferential
methods across values of o and . These models were purposely chosen as
the number of parameters is small which allows us to isolate the fractionation
parameter and examine the inferences without the complications of other pa-
rameters that may be included in a more complex model. In addition, posterior



USING THE BAYESIAN FRAMEWORK FOR INFERENCE... 799

Table 4: Posterior Hypothesis Probability 2.5%, 50% and 97.5%
quantiles for P(H4|D) with varying levels of a and o for Model
2 where both OI Beta(3,3,0.5) and OIBeta(2,1,0.5) prior distribu-
tions are considered. Quantiles are reported as (Qo.025, Qo.5, Q0.975)-

All values based on 200 simulated data sets.

OIBeta(3,3,0.5

OIBeta(2,1,0.5

) )

o a (Qo.025, Qo.5, Q0.975) (Qo.025, Qo.5, Q0.975)
0.01 1 (0.4626 0.5023, 0.5413) (0.4720, 0.5897, 0.9195)
0.99  (1.0000 1.0000, 1.0000) (1.0000, 1.0000, 1.0000)

0.98 (1.0000 1.0000, 1.0000) (1.0000, 1.0000, 1.0000)

0.97 (1.0000 1.0000, 1.0000) (1.0000, 1.0000, 1.0000)

0.96  (1.0000 1.0000, 1.0000) (1.0000, 1.0000, 1.0000)

0.95 (1.0000 1.0000, 1.0000) (1.0000, 1.0000, 1.0000)

0.1 1 (0.0015 0.4911, 0.5143)  (0.5035, 0.5810, 0.8525)
0.99  (0.0003 0.0084, 0.5951) (0.5354, 0.7944, 0.9933)

0.98 (0.0021 0.1544, 0.9946) (0.6645, 0.9749, 0.9999)

0.97 (0.0235 0.9630, 1.0000) (0.8627, 0.9990, 1.0000)

0.96 (0.5228 0.9998, 1.0000) (0.9929, 1.0000, 1.0000)

0.95 (0.9958 1.0000, 1.0000) (0.9999, 1.0000, 1.0000)

0.25 1 (0.0021 0.2680, 0.5205) (0.4898, 0.5853, 0.8878)
0.99 (0.0017 0.0164, 0.4278) (0.5090, 0.6259, 0.9700)

0.98 (0.0014 0.0355, 0.9406) (0.5336, 0.7282, 0.9863)

0.97 (0.0047 0.0886, 0.9743) (0.5533, 0.8195, 0.9985)

0.96 (0.0064 0.3525, 0.9965) (0.5857, 0.9194, 0.9995)

0.95 (0.0132 0.4542, 0.9995) (0.6443, 0.9642, 1.0000)

predictive distributions were considered in a limited sense to illustrate how they
can be utilized in the fractional differential equation paradigm.

An important issue that has arisen from this work is the choice of prior
distribution for o when conducting hypothesis tests. The two One Inflated
Beta distributions shown seem to be useful with the distribution with positive
density for values near one being preferred to that where the density is of
the portion less than zero being concentrated more towards the middle of the
support. Further, work should be done to evaluate other parametrizations
and possibly other distributions and their influence on the posterior hypothesis
probabilities.
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More complex models and models with larger parameter spaces should be
included in future work where numeric solvers more than likely need to be
employed to solve such complex fractional differential equations and systems.
Many real world applications of fractional calculus and differential equations
exist where Bayesian methods and estimation is important. These range from
viscoelastic diffusion in complex fluids [30], anomalous diffusion [31], fractional
order control problems [32], biological systems [33], and a lot more [18]. Deter-
mining the accuracy of the numeric solver and its impact on inferences should be
examined to ensure that the choice of numeric solver does not unduly influence
any parameter inferences or predictive distributions.

The significance of this work is two fold. Firstly, it establishes the viability of
using the Bayesian paradigm for both estimation and hypothesis testing when
applied to fractional differential equations. Secondly, the work is pioneering
because it brings together fractional partial differential equations and statistical
techniques for the first time.
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