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Abstract: The purpose of this paper is to investigate a subclass of analytic
functions associated with generalized cardioid in the open unit disk. The ge-
ometric properties of functions in the subclass are investigated. Subsequently,
the bound for initial coefficients, the Fekete-Szego inequality and second Hankel
determinant inequality for functions belonging to this class are obtained. Fur-
thermore, we find the sharp estimate for Toeplitz determinant, 75(2) for this
class.
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1. Introduction

Let us denote by A the class of analytic functions f in the open unit disk
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U = {z:|z| <1} of the form
o0
) =24 anz". (1)
n=2

Denote S as a subclass of A consisting of univalent functions. Some sub-
classes of & play an important role in geometric function theory such as the
class of starlike functions, S* and class of convex functions, C. These classes are
characterized by quantities zf'(z)/f(z) and 14z f"(z)/ f'(z) respectively. Many
authors have generalized the aforementioned classes namely by applications of
operators to obtain new subclasses, for example [28].

A function f is said subordinate to g, denoted f < g, if there is an analytic
function w(z) defined on U with w(0) = 0 and |w(z)| < 1 such that f(z) =
g(w(z)) for z € U. If g is univalent in U then f < ¢ is equivalent to f(0) = ¢(0)
and f(U) C ¢g(U). Ma and Minda [13] gave unified representation of various
subclasses of f by using subordination. They introduced the following classes
that include some well-known classes:

5*(h) = {f A z}lg) < h(z)} ,

and

"
K(h):{feA:H—Zf (2) <h(z)}.
f'(z)

The function h(z) maps U onto a set bounded in the right half-plane. Re-
cently, several authors defined many interesting subclasses of S* by restricting
the value of zf'(z)/f(z) lying in specific domain in the right half plane. Sokol
and Stankiewicz [26] introduced the class S} consisting of functions f € A sat-
isfying |(zf'(2)/f(2))? — 1| <1 =z € U, where zf'(z)/f(z) lies in the domain
bounded by the right-half of the lemniscate of Bernoulli. This class can be writ-
ten in the form of subordination as S} := S*(vV/1+z2) ={f € A: z2f'(2)/f(2) <
V1 + z}. Some results associated with this class can be found in [1, 8, 17, 23].
Aouf, Dziok and Sokol [3] studied the class S*(¢.), where g. = /1 + ¢z which
can be reduced to class S;. Also, Mendiratta, Nagpal and Ravichandran [15]
investigated and introduced the class S5, where zf'(z)/f(z) lies in the domain
bounded by the left-half shifted lemniscate of Bernoulli. With the same con-
cept, Sharma, Jain and Ravichandran [22] studied the class S¢ which lies in
the domain bounded by a cardioid. For list of some classes that are defined by
subordination, one can see [5, 29].

Motivated by the work of Sharma et al. [22], a class defined by subordi-
nation such that zf’(z)/f(z) lies in a specific curve in the right half plane is
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introduced. We denote the class as S§(k), the class of analytic functions in
the unit disk with zf’(z)/f(z) lying in the interior of the general cardioid in
the right half plane.

Let hi(z) : U — C be a function defined by

hp(2) =14 2kz + k2%, h(0) =1 where 0 <k <2/3. (2)
We define S¢.~(k) as a subclass of A where

2f'(2)
f(2)

A function f belongs to S&~(k) if and only if zf'(2)/f(2) lies in the region
bounded by a general cardioid €2, on the right half plane given by:

St (k) = 8% (hy) = {f €A: <142z + kz2} . (3)

Qp = {z+iy: (22 +y* — 20+ 1 - 5k*)*+
4k (2% 4 % — 22 + 1 — 5k?) — 8k3x — 8k* + 8K = 0},

where 0 < k < 2/3.

The function (2) is univalent in U and it is easy to see that hi(U) = Q,
therefore f(z) belongs to Si if and only if zf'(2)/f(z) < hi. This gives the
structural formula for functions in S§ (k). A function f € St (k) if and only
if there exists an analytic function ¢, ¢ < hy such that

() = Zexp</oz &t_ldt) ()

Choosing ¢ = hy, in (4), we see that the function
2

folz) = zexp <2kz + %) = 2+ 2k + (%2 + §>23 + o

belongs to the class S¢ (k).

Interestingly, the main focus of univalent function theory is to investigate
on the coefficients of functions. The extensive focus is to estimate the bounds
of coefficients and this includes Hankel determinant. Hankel determinant of f
was defined by Pommerenke [18] as

Qn, an4+1 -+ Qn4qg-1
(n+41 an42 - Un+q
Hy(n) = : : : : ’
an+q—1 Gn4q " An42g—2

where ¢ > 1 and n > 1. The uniqueness of Hankel determinant is that it
has constant entries along reverse diagonal. The subject of investigation for
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this determinant varied from rate of growth of Hy(n) as n — oo ([16]) to
determination of precise bounds on Hy(n) for some classes for specific ¢ and
n in the unit disk, U. For n = 1, ¢ = 2 and a3 = 1, Ha(1) = |az — a3| and
the sharp inequality Ha(1) = |az — a3 < 1 holds for functions analytic and
univalent in U, [4]. The more general functional |ag — pa3| is known as Fekete-
Szegd, studied by [7, 10]. For n = q = 2, Hy(2) = |agay — a3 is known as second
Hankel determinant. Janteng, Halim and Darus [9] obtained sharp bound for
H(2) for the class R. For more details on the class R, one can refer to [14].
For other studies about Hankel determinant of various classes, one can refer to
11, 20, 21, 27].

Closely related to Hankel determinant is Toeplitz determinant. The Toeplitz
determinant of f for ¢ > 1 and n > 1 is defined as

Aan, n+1 " OGniq-1
An+1 Qp s An+q
Tq (n) = . )
Un+q—1 QAn4+q -~ Aan,

particularly for ¢ = n = 2, T»(2) = a3 — a%; ¢ = 2,n = 3,T4(3) = a3 — a%;
q=3,n=1T31) =1+ 2a3 + 2a3a3 — a3 and ¢ = 3,n = 2,T3(2) = (az —
ag)(a3 — 2a2 + azay) . For studies on Toeplitz determinant, see [19, 24].

We shall need the following lemmas. Let P be the class of functions p
satisfying Re p(z) > 0, z € U, and in the form

p(z) =1+ Z 2. (5)
n=1

Lemma 1. ([4]) Let the function p € P be given by (5), then |c,| < 2 for
each n.

Lemma 2. ([12]) Let the function p € P be given by (5). Then for some
complex valued x with |z| < 1 and some complex valued § with |{| < 1 we have

29 =3 + a4 —cb),

des =3 4+24 — A)eyr — (4 —eD)a® +2(4 — ) (1 — |z]?)E.
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Lemma 3. ([13]) Let p € P. If v is a real parameter then

—4v + 2, if v <0,
lco —ved| < {2, if 0<v<l,
dv — 2, if v>1.

Lemma 4. ([6]) Let p € P be of the form (5) and A € C. Then
len — Aegen—k| < 2 max{1, |2\ — 1|},

forl1 <k<n-1.

Lemma 5. ([2]) For 0 < a < /2, let r, be given by

(V1—a2—(1-a®)2,  if 0<a<2V2/3,
r, =
V2 —a, if 2v2/3<a< V2,
then {w: jw—a| <7y} C{w:|w?—1] < 1}.
The aim of this paper is to investigate the geometric properties of functions
in the class S (k). We also seek the upper bound for initial coefficients,

Fekete-Szego functional, second Hankel determinant and also several Toeplitz
determinants.

2. Main results

Firstly, we shall prove the following lemma.

Lemma 6. For1l—Fk <a <1+ 3k, let r, be given by

a—1+k, if 1—-k<a<l1l+Ek,
Tq =
1+ 3k — a, if 1+k<a<1+3k,

and R, be given by

143k—a, if 1—-k<a<1/3(k+3),
Ro=19 V(1 —a)(1—a—2k)+5k2+k(k+1—a)?/(a—1),
if 1/3(k+3)<a<1+3k,

then {w : |lw—a|l <71} CQCH{w: |w—al <Ry}
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Proof. Let ¢(z) = 1+ 2kz + kz?. Then on the boundary of 1)(U) we have
() = w. The parametric equations of w = u + iv are given by

u(t) =1+ 2k cos t+ k cos 2t, v(t) =2k sin t + k sin 2t.

Since the curve w = 1(e®) is symmetric with respect to the real axis, so it is
sufficient to consider the interval 0 < ¢ < w. The square of the distance from
the point (a,0) to the points on the curve is given by

2(t) = (u(t) — a)® + (v(t))?
= (1 —a+ 2k cos t + k cos 2t)* + (2k sin t + k sin 2t)*
= (1 —a)? +5k* + (4k(1 — a) + 4k?) cos t + 2k(1 — a) cos 2t,
2(t) = —4k sin t(1 —a+k +2(1 — a) cos t),
2"(t) = —(4k(1 — a) + 4k*) cost — 8k(1 — a) cos 2t.

Solving 2/(t) = 0 yields stationary points at ¢ = 0,7 and cost = (1 —a +
k)/2(a — 1). First we obtain the radius for a disk, r,, so that the disk is inside
Q.

Let 1 —k <a<1+k, 2"(m) > 0 shows that z(¢) is minimum at ¢ = 7.
Then

Tq = \/Z(ﬂ-)
= Vk? = 2k(1 — a) + (1 — a)?
=k—1+a.

For 1+ k <a <1+ 3k, 2”(0) > 0 then 2(¢) is minimum at ¢ = 0. Therefore

re = v/ 2(0)
= /9k2 4 6k(1 — a) + (1 — a)?
=3k—1+a.

Next we determine the radius for a disk, R,, so that € lie inside the disk.
Let 1 —k <a<1/3(3+k), 2”(0) < 0 shows that z(¢) is maximum at ¢ = 0,

R, =+/2(0)
= \/9k2 + 6k(1 —a) + (1 — a)?
=3k —1+a.
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If 1/3(3 + k) < a < 1+ 3k, it shown that z(¢) is maximum at ¢ = to where
costo=(1—a+k)/2(a—1). Then

Ra: Z(to)
=1 —a)(1—a—2k) +5k2+k(1+k—a)?/(a—1).

O

Our first theorem is to determine the bounds for |a,| in the class S¢.~. The
similar method in [25] is used to determine it.

Theorem 7. If f(z) =z+ > ", an2" € S§ then

)3 <<3kT—L|— 1)2 - 1>|a”‘2 s ﬁ

n=2

Proof. Suppose f € Sfo. Then zf'(2)/f(2) = 1 + 2kw(z) + kw?(z), where
w is an analytic function in U with w(0) = 0 and |w(z)| < 1 for all z € U. Since
F(2)(1 + 2kw(2) + kw?(2)) = zf'(2) and z = re?| thus

o0 2T )
2WZ|an|2r2”:/ |f(re?)|?do
n=1 0
?”ewf/(?”ew) 2

2m
- /0 14 2kw(re?) + kw?(ret)

2m 0 £/ 0|2
s [T,
o (1+3k)2

do

1 2m : :
:7(3“1)2/0 [re®® £/ (rei®) [2d
21 o~ 2 2,2
= 72271 lan|[“r",

Bk +1)* &

where 0 < r < 1 and a; = 1. Then, we get
o) n )
2,.2n
—) = 1) <0. 6
;‘a”‘ " ((3k+1) = ©)

By letting » — 17, yields the required result. ]

We have the following corollary.
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Corollary 8. If f(z) =z+ > .0 anz" € S, then

3k(2 + 3k)
|an|<\/n2_1_3k(2+3k)for n=m>+vV1+3k and meN.

The next theorem gives the necessary and sufficient condition for special
functions z + A, 2" to be in the class S¢ ..

Theorem 9. A function f(z) = z+ A,z" (n
class S¢. if and only if

2,3,...) belongs to the

Al < l—-n++/(n—1)2+4k(k+n—1)
"= 2(n+k—1)

Proof. The function in the form f(z) = z + A, 2" € S* if |4, | < 1/n. Note
that S~ C S*. Suppose that w = zf’(z)/f(z). Function w maps U onto the
disk

‘ o 1- n|An|2

(n —1)[A4]
1—[Ap[?

1— A,

Since a := (1 — n|4,|?)/(1 — |4,]?) < 1 then by Lemma 6 for the disk to lie
inside €2 if and only if

(n —1|Ay)) 1— n\AnP
< —1
AR SToja,er tF

(1—k—n)|A.]* +k
1—[Ap[?

which gives (n+k —1)|A,|? + (n—1)|A,| — k < 0. Solving the inequality yields
the result.

O
We state the following initial coefficients and Fekete-Szego estimate for the
class.

Theorem 10. Let f € Si be of form (1), then

|a2‘§2k7
k|2, if 0<k<1,
jas| < 5 1 2
2 |4k+1, if ;<k<3,
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k{4k2—3k+2, if 0<k

<
aqg] < — -
laa] < k(4k + 3), if L<k<

i
9

b Wl

3

and for any non-zero complex number
2 ].
lag — pas| <k max 1,5 = 2(2p = Dk o

Proof. If f € S{, then from the condition (3)
zf'(2)
f(2)

where w(z) is analytic function in U with w(0) = 0 and |w(z)| < 1 for all z € U.
Let

=1+ 2kw(2) + kw?(2), (7)

-2t

then p is analytic and p € P. Rearrange (8)

=l4+cz+c+.. (z€l) (8)

—1 1 2
w(z) = i&z;ﬁ = 5(612’ + (02 — %)22 + (03 —C1Cy + C?)Zg + )

Now, by expanding the right and left sides of (7), we obtain

zf'(2) _ 2V, 2 - 3y.3
TON 14 agz + (2a3 — a3)z” + (3a4 — 3azaz + a3)z” + ... 9)
and
2 i\ 2 €1€2\ 3
14 2kw(z) + kw?(2) = 1 4+ keyz + k(o — Z)Z + k(es — T)z +... . (10)
Then, by comparing (9) and (10) we get
a9 = k‘Cl, (11)
k 1
ag = 5(c2 = (7 = k)el), (12)
k 1 k
ay = g(c?, —5(1=3k)eres + g(41<; —3)ci), (13)

From well known Lemma 1 and (11), we get

las| < 2k. (14)
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From (12), we have

k 1
\a3|§§ co — <Z_k> . (15)
Using Lemma 3, we obtain
1 2 if 0<k<i
co — <— - k:) al <7 1 . Y (16)

with the value v from the lemma is v = ( — k). Therefore, using (15) and (16)
we get

k|2 if 0<k<l
jag| < =47 ? DS (17)
2 |4k+1, if $<k<3

Now, we find the estimate bound for as. From (13) and apply triangle
inequality, we have

|a\<ﬁ(
=73

Using Lemma 4 yields,

1
C3 — 5(1 — 3]@‘)6162

k
+ g(4k — 3)\c1|3) .

1
C3 — 5(1 — 3]43)6162

. 1
< 2, if 0<k’<§, (18)
~ | 6k, if $<k<32

Then, together from (18) and Lemma 1, we get

3 ’. (19)

k |4k% —3k+2 if 0<k<
‘a4|§_ 2 . 1
4k% 4 3k if 1<k<

wlhy Wl

Next, for functional a3 — pa3 where u is non-zero complex number, using
(11) and (12), we have
(o= (3-1)4) -
(6] 1 1 HECq

co — G + (2u — 1)k:> c§> .

Applying Lemma 4, with \ = % + (2u — 1)k, we obtain

2
asz — pag =

no| T

| F

1
|ag — paj| < k max{l, ‘5 —2(2n — 1)k‘}
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In the next theorem we look at the second Hankel determinant bound for
functions in S¢..

Theorem 11. Let f of the form (1) be in Sf.. Then

lagay — a| < k2. (20)

Proof. Substitute (11), (12) and (13) into the functional agas — a3, we have

s K 1 k 3
azaq — a3 = 1| 63— 5(1 —3k)ciea + §(4k: —3)c]

k? 1 1 2
vy (c% —2ci¢cy (Z - k) + (Z - k) c%)

k? 1
=51 <80103 — 6c3 — ey — §(16k2 + 3)0%) .
Applying Lemma 2 and simplifying it,
2

2
204 — Q3 = ﬁ

1
<8clc3 — 63 — cley — §(16k‘2 + 3)cil>

k? 1
=3 (8011(6{’ +2c1(4 — )z — c1(4 — 3)a?

6
+2(4 — (1 - |z)2) — Z(c;1 +2¢3 (4 — Az + 224 - A2)?)

c? 1

- El(c% + (4 —c})) — §(16k2 + 3)0%)
k? 3 1

=51 <2011l - 50‘% - 56411 +4ct(4 — Az — 33 (4 — )z
1 3

- 50?(4 — A —2¢3(4 — ) — 5(4 —2)%a?

+4c1(4 — c%)(l — |a:\2)z>
k2 1 1
=1 ( - §(16k‘2 +3)ct + 50?(4 — Az
1
— 5(0% +12)(4 — c%):vQ +4c1(4— c%)(l — \m|2)z>

Using Lemma 1 and assuming without loss generality ¢ = ¢; € [0,2]. Applying
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triangle inequality, we obtain

k’2
24

1 A +12)(4 — A)|z* + 4e(4 — A (1 — \a:|2)> = G(e,|z|).

1 1
lagay — a3| < = (5(16,%2 +3)ct + 502(4 — Az

+2(

Differentiate G(c, |z|) with respect to |z|, we get
0G(c,|=]) _

Lo ) q - @)@ - 8c+12)a).
0|z| 2

It is clear that 8(| ‘| ) > 0, which shows that G(c, |x|) is an increasing function
with |z| in closed interval |z| € [0,1]. Therefore, G(c, |x|) < G(c, 1), and

max G(c,|z|) = G(c, 1)
k‘2

1
16k2 1 AP 4 2e2(4 — 2
24<8(6k +3)c* + 16¢ — 4c +20( )

+-(4— (P —8c+ 12)>

N | —

k‘2

=21 <8(16k2 —5)ct —2¢% + 24> = F(c), (say)

where k € (0,2/3] is a constant. Then

F'(c) = I;i ( (16k? — 5)c3 —4c>

k2

T8
2

48

((16k* — 5)c* — 8),
F"(c) = = (3(16k* — 5)c* — 8) .

The critical numbers are

/| 8
c and c=c T6r2 — %
For ¢* = \/—16/1@82—57

F'(c*) = K 3(16k* — 5)L -8
48 16k2 — 5
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k’2
— >0,
3
then relative minimum occurs at ¢ = ,/#.
For ¢ =0,
1" k2 2
F"(0) = = (3(16k* — 5)(0) — 8)
—_ k2

- <0
6 b

then relative maximum occurs at ¢ = 0 and the relative maximum is

G(0,1) = F(0) = Z <8(16k2 —5)(0) —2(0) + 24>
= k%

To find the absolute maximum, we also check at the endpoint ¢ = 2

k2
G(2,1) = F(2) = 55 (8(16k2 —5)(16) — 2(4) + 24>
4 - k?
= _k 4
For k € (0,2/3], k*> 2k*+

T . Thus, |agay — a3| < k2. O

The following are Toeplitz determinants bound for functions in S¢,. Since

the functional in Toeplitz determinants are not rotationally invariant, the as-
sumption ¢ € [0, 2] is invalid.

Theorem 12. Let f be of the form (1) be in the class S, then
5k? if 0<k<1i
T5(2)| = |a3 — a3] < ’ 4
‘2()| ‘2 3‘_{414324-]1—2(4]{34-1)2, if iSkS%

with 0 < k < 2/3. The inequality is sharp for the function f(z) = zek(22+22/2)

Proof. By using the triangle inequality,(14) and (17), we obtain
| T2(2)| = |a3 — a3| < |as|? + |as|?

_ 4k + k2, if 0<k<
T4k Bk +1)2, i %gkg

@it =
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Theorem 13. Let f be of the form (1) be in the class S, then

K2+ B (4k2 - 3k 4 2)2, it 0<k<i
af —af] <B4k + 12+ Bk -3k +2)%, if 1<k<l
B2 (4k 4 1)? + E (42 — 3k)2, if L<k<?2

Proof. Using the same concept of proving as in Theorem 12, by applying
triangle inequality,(17) and (19), we have

T2(3)] = |aj — ai] < [a|* + |aa?
K2+ B (4k2 — 3k + 2)2, if 0<k<l,
<B4k 412+ B4k -3k +2)%, i l<k<l,
B2 (4k + 1) + & (4K 4 3k)2, it L<k<?2

Theorem 14. Let f be of the form (1) be in the class S, then
11 — 242 + 2a3a3 — a3

- 1+ 8k% + k% max {1, |1 — (1 + 12k?)|}, if0<k<1,
T+ B4k + 1) max {1,]1 - B+ 1282))), ifl<k<2Z

Proof. Since f € S¢q is of the form (1) and applying triangle inequality
then

|T5(1)] = |1 — 2a% + 2a%a3 — a§| <1+ 2|ag\2 + |as||as — 2a%\.

Next, applying Fekete-Szego functional with p = 2 we have

} . (21)

By considering (14), (17) and (21), we conclude that the proof is complete. [J

k
laz — 2a3| < k max {1, L=+ 12k2)

Theorem 15. For f € S§ of the form (1) then

|T3(2)‘ = |((12 - a4)(a% - 20% + (12(14)|
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6k2<2k+§(4k2—3k+2)), if 0<k<i,
< {2k + B2 - 3k+2)> <5k2 + B 4k + 1)2>, it L<k<i
2k+§(4k2+3k)) <5k2+’%f(4k:+1)2>, if l<k<2
Proof. Let f € S§q be of the form (1), then
|T5(2)] = (a2 — a4)(a3 — 243 + azas)|
= |ay — ayl|a3 — 243 + azay]
= |ay — a4l|a3 — a2 — a3 + azay]
< laz — aa|(la3 — a3| + |azas — a3]).
Clearly, by triangle inequality |as — a4| < |ag| + |a4|. Therefore
|ag — aa| <lag| + a4
(22)

2k + E(4k2? — 3k + 2), if 0<
3

k<
2k + X (4k% + 3k), if L1<k<

)

Wl Wl

Also, |a3 — a3 — a% + azay4| < |a3 — @3| + |agas — a3|. Then by (20) and
Theorem 12, we obtain

a3 — a3 — a3 + azau| < |a5 — a3| + |azas — a3

- 6k2, if 0<k<i, (23)
TR Bk + 12, if 1<k<2
By applying together (22) and (23), we complete the proof. O
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