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Abstract: In this article, we modify the Picard-Lindelöf iteration scheme in
order to show an iteration algorithm for parameter estimation of ordinary dif-
ferential equations. The proposed algorithm inherited the advantages exhibited
in the classical algorithms and, moreover, the parameters can be transformed
to a form that are convenient and suitable for computation. In the end, a
numerical example has also been discused to highlight the results.
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1. Introduction: Multiple Shooting Method

Let
Θ = {(ti,Xi) : i = 1, . . . ,m}

be a set of given data. In general, we may interpret ti as measurement moments
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of some, for example, experimental d-dimensional progress test or dataXi ∈ R
d.

Of course, we suppose: 0 < t1 < t2 < · · · < tm and Xi = (Xi1 · · · Xid)
T ,

i = 1, . . . ,m.
Also, let

ẋ = f(t,x,p) (1)

be a d-dimensional differential equation. We suppose that any trajectory of
equation (1) is defined and unique in the time-interval [0, T ], T > tm, for all
initial conditions and all parameters p ∈ R

p.
Let the data Θ satisfy the following observation law

Xij = gj(x(ti),p) + aijεij , i = 1, . . . ,m, j = 1, . . . , d, (2)

where:

1. the function g = (g1 · · · gd) : R
d+p → R

d is continuous;

2. aij are positive constants.

3. εij are independent and standard Gaussian distributed random variables.

On the basis of data Θ and law (2), the goal is to estimate the initial
condition x0 ∈ R

d and the parameter vector p0 ∈ R
p for differential equation

(1) such that

L(x0,p0) = min
{

L(y,p) : y ∈ R
d, p ∈ R

p
}

, (3)

where

L(y,p) =

m
∑

i=1

d
∑

j=1

(Xij − gj(x(ti;y,p),p))
2

2aij

and x(t;y,p) is the solution of (1) with initial condition x(0;y,p) = y.
The direct mimimization of L with respect to vectors y and p is exactly

initial value approach.
It is well-known that the direct optimization metods used for problem (3)

are highly nonlinear and in the general case computational complexity (and
therefore the computational cost) is also high.

The multiple shooting method is an efficient and robust method minimising
these two effects. Following Bock, see [2], [3], [4] (also see [1], [10] and references
therein), we divide the interval [0, T ] into subintervals [τi−1, τi] such that

t0 = τ0 = 0; τi ∈ (ti, ti+1), i = 1, . . . ,m− 1; tm+1 = τm = T.
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For every i = 0, . . . ,m− 1, we consider a different initial value problem

ẋ = f(t,x,p), t ∈ [τi, τi+1], (4)

x(τi) = x
(i)
0 , (5)

with corresponding solution x
(

t;x
(i)
0 ,p

)

.

Consider the cost function

Lx

(

x
(0)
0 , . . . ,x

(m−1)
0 ,p

)

=

m
∑

i=1

d
∑

j=1

(

Xij − gj

(

x
(

ti;x
(i)
0 ,p

)

,p
))2

2aij
(6)

and the minimization problem

min
{

Lx

(

x
(0)
0 , . . . ,x

(m−1)
0 ,p

)

: x
(i)
0 ∈ R

d, p ∈ R
p
}

(7)

subject to

lim
t→τi−0

x
(

t;x
(i−1)
0 ,p

)

= lim
t→τi+0

x
(

t;x
(i)
0 ,p

)

, i = 1, . . . ,m− 1. (8)

Obviously (8) is equivalent to the following equality

x
(

τi;x
(i−1)
0 ,p

)

= x
(i)
0 , i = 1, . . . ,m− 1. (9)

2. Picard-Lindelöf Iterations

Let us set

φ0(t) =























X1, if t ∈ [τ0, τ1),

X2, if t ∈ [τ1, τ2),
...

Xm, if t ∈ [τm−1, τm]

(10)
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and

φk+1(t) =







































































C
(0)
k+1 +

t
∫

τ0

f(s,φk(s),p) ds, if t ∈ [τ0, τ1),

C
(1)
k+1 +

t
∫

τ1

f(s,φk(s),p) ds, if t ∈ [τ1, τ2),

...

C
(m−1)
k+1 +

t
∫

τm−1

f(s,φk(s),p) ds, if t ∈ [τm−1, τm],

(11)

where for any k = 0, 1, . . . , the parameter p and constant vectors C
(i)
k+1 are

obtained as the solution of following constrained problem

min
{

Lφk+1

(

C
(0)
k+1, . . . ,C

(m−1)
k+1 ,p

)

: C
(i)
k+1 ∈ R

d, p ∈ R
p
}

(12)

subject to

φk+1

(

τi;C
(i−1)
k+1 ,p

)

= C
(i)
k+1, i = 1, . . . ,m− 1. (13)

Let us mark that (12), (13) is a classical constrained optimization prob-
lem. Hence, we may use any well-known solution metod such as any non-linear
programming method.

Theorem 1. Let there exist a vector X0 and two numbers a > 0, b > 0
such that:

1. The function f is continuous in cylinder Ca,b(X0) = {(t,x) : t ∈ [0, T ], ‖x−
X0‖ ≤ b} and uniformly Lipschitz continuous with respect to x.

2. ‖X i −X0‖ ≤ b/2, i = 1, . . . ,m and ‖C
(j)
k −X0‖ ≤ b/2, k = 0, 1, . . . .

3. T ≤ min
{

a, b
M

}

.

Then the limit

x(t) = lim
k→∞

φk(t), t ∈ [0, T ]

exists and the function x(t) is a solution of minimization problem (7), (9).
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Proof. We will follow the classical approach and techniques proving the
convergence of Picard-Lindelöf iterations.

In the space C0([0, T ], Bb(X0)) of all continuous functions from [0, T ] to
Bb(X0) = {x : ‖x −X0‖ ≤ b} we consider the metric induced by sup-norm
‖ψ‖∞ = sup{‖ψ(t)‖ : t ∈ (0, T )}.

We define the Picard operator as follows

Γ :([0, T ], Bb(X0)) → ([0, T ], Bb(X0)),

Γψ(t) =







































































C(0) +

t
∫

τ0

f(s,ψ(s),p) ds, if t ∈ [τ0, τ1),

C(1) +

t
∫

τ1

f(s,ψ(s),p) ds, if t ∈ [τ1, τ2),

...

C(m−1) +

t
∫

τm−1

f(s,ψ(s),p) ds, if t ∈ [τm−1, τm],

where the parameter p and constant vectors C(i) are obtained as the solution
of the following constrained problem

min
{

Lψ

(

C(0), . . . ,C(m−1),p
)

: C(i) ∈ R
d, p ∈ R

p
}

subject to

lim
t→τi−0

ψ (t) = C(i), i = 1, . . . ,m− 1.

First we have to show that Γ maps C0([0, T ], Bb(X0)) into itsef. Indeed,
let ‖ψ‖∞ < b. Then for any t ∈ [0, T ], we have t ∈ [τi, τi+1) for some i =
0, . . . ,m− 1, i.e.

‖Γψ(t)−C(i)‖ ≤
∥

∥

∥
Γψ(t)−X0 +X0 −C

(i)
∥

∥

∥

≤‖Γψ(t)−X0‖+
∥

∥

∥
X0 −C

(i)
∥

∥

∥

=

∥

∥

∥

∥

∥

∥

t
∫

τi

f(s, ψ(s),p) ds

∥

∥

∥

∥

∥

∥

+
∥

∥

∥
X0 −C

(i)
∥

∥

∥

≤M |t− τi|+
∥

∥

∥
X0 −C

(i)
∥

∥

∥

≤MT +
b

2
≤
b

2
+
b

2
= b.
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Next we have to prove that Γ is a contraction, i.e. for any two functions
ψ1, ψ2 ∈ C0([0, T ], Bb(X0)), we have (for some q < 1)

‖Γψ1 − Γψ2‖∞ ≤ q‖ψ1 − ψ2‖∞.

Let us fix t∗ ∈ [0, T ] such that

‖Γψ1 − Γψ2‖∞ = ‖(Γψ1 − Γψ2) (t
∗)‖ .

Let the index i be chosen such that t∗ ∈ [τi, τi+1). Using the definition of Γ (as
in classical case) we have

‖(Γψ1 − Γψ2) (t
∗)‖ =

∥

∥

∥

∥

∥

∥

t∗
∫

τi

(f(s, ψ1(s),p)− f(s, ψ2(s),p)) (t
∗) ds

∥

∥

∥

∥

∥

∥

≤

t∗
∫

τi

‖(f(s, ψ1(s),p)− f(s, ψ2(s),p)) (t
∗)‖ ds

≤L

t∗
∫

τi

‖ψ1(s)− ψ2(s)‖ ds

≤LT ‖ψ1 − ψ2‖∞ < q ‖ψ1 − ψ2‖∞ .

Therefore, using the Banach fixed point theorem, there exists a unique fixed
point of Γ, i.e. there exists a unique function φ such that Γφ = φ.

3. A Two-Dimensional Example

As an example, let us consider the two-dimensional data

Θ = {(0.1, 1), (0.3, 0.34), (0.5, 0.2), (0.7, 0.15), (0.9, 0.1)} ,

and linear model

ẋ = p1x+ p2. (14)

In this example we seek the parameters p1, p2, and x0 such that the solution
of equation (14) with initial condition x(0) = x0 best fits the given data Θ.

It is suitable to choose τi =
i
5 , i = 0, 1, 2, 3, 4, 5.
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We define an initial gues for the approximation as:

φ0(t) =































1, if t ∈ [τ0, τ1),

0.34, if t ∈ [τ1, τ2),

0.2, if t ∈ [τ2, τ3),

0.15, if t ∈ [τ3, τ4),

0.1, if t ∈ [τ4, τ5].

The calculation algorithm listed below is based on CAS Maple.

restart;with (GlobalOptimization ); with (plots);

data :=[[.1 ,1] ,[.3 ,.34] ,[.5 ,.2] ,[.7 ,.15] ,[.9 ,.1]];

grid_data :=[0 ,.2 ,.4 ,.6 ,.8 ,1];

f:=(A,B,y)->A*y+B;

x[0]:=t-> piecewise (0<=t and t<.2, data [1][2] ,

.2<=t and t<.4, data [2][2] ,

.4<=t and t<.6, data [3][2] ,

.6<=t and t<.8, data [4][2] ,

.8<=t and t<=1, data [5][2]);

p1:= pointplot (data ,color=red);

p3:= plot (x[0]( t),t=0..1 , color=blue );

display(p1 ,p3);

x[1]:=t-> piecewise (

0<=tandt <.2,C[1]+ int(f(A[k],B[k],x[k -1]( s)),s=.1..t),

.2<= tandt <.4,C[2]+ int(f(A[k],B[k],x[k -1]( s)),s=.3..t),

.4<= tandt <.6,C[3]+ int(f(A[k],B[k],x[k -1]( s)),s=.5..t),

.6<= tandt <.8,C[4]+ int(f(A[k],B[k],x[k -1]( s)),s=.7..t),

.8<= tandt <=1,C[5]+ int(f(A[k],B[k],x[k -1]( s)),s=.9..t));

sol:= GlobalSolve (sum ((x[k]( data [i][1]) - data [i][2])^2 ,

i=1..5) ,

[seq(limit(x[k](t),t=grid_data [i],left )

=x[k]( grid_data [i]),i=2..5)] ,

A[k]= -10..10 , B[k]= -10..10 ,

seq(C[j]=0..1 , j=1..5));

assign(sol [2]);

p1:= pointplot (data ,color=red);

p3:= plot (x[k](t),t=0..1 , color=blue );

display(p1 ,p3)

The output of GlobalSolve is (the decimal place accuracy is 4)

sol :=[0.0016 ,[A[1]= -5.7411 ,B[1]=.6842,C[1]=.9948 ,

C[2]=.3623 ,C[3]=.1892,C[4]=.1251,C[5]=.1184]]
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Figure 1: Initial gues and first iteration

and the output graphics are ploted of Figure 1.

Continuing algorithm, on the second step we receive

x2(t) =



















































0, t < 0,

1.7379 − 9.1097t + 16.5583t2 , t ∈ [τ0, τ1),

1.2416 − 4.1468t + 4.1509t2, t ∈ [τ1, τ2),

0.8205 − 2.0413t + 1.5191t2, t ∈ [τ2, τ3),

0.4822 − 0.9133t + 0.57918t2 , t ∈ [τ3, τ4),

−0.1193 + 0.5905t − 0.3607t2, t ∈ [τ4, τ5),

0, t > 1.

(15)

It is not hard to calculate directly the solution of linear equation and to
verify that the quadratic error is less than 0.00234.
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