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Abstract: The complex analysis methodology (method and corresponding
algorithm) for solving the problems of applied quasipotential tomography de-
veloped by us, and which assumes (for each of the respective injections) the
presence of only equipotential lines (with the given distributions of local ve-
locities or values of stream functions) and streamlines (with known potential
distributions on them) at the boundary of the domain is modified. This pro-
vides sufficient openness (for various additions, generalizations, etc.), flexibility
(for mathematical manipulations) and greater accuracy (because, unlike com-
mon practical applications, sections of potential application are not considered
“point-like”) of the corresponding algorithm. A number of numerical experi-
ments were performed in this work.
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1. Introduction

As a rule (see [1], [2], [3], [4], [5], [6], [8], [9], [12]), image reconstruction by

Received: July 20, 2020 © 2020 Academic Publications
§Correspondence author



904 A. Bomba, M. Boichura

impedance tomography methods does not allow to obtain images of sufficient
quality. This, in particular, is a consequence of the need to be limited to a finite
number of injections in the calculations [8], [9], [12]. It is almost impossible to
solve this problem. Also, one or another injection scheme [8], [9] or the method
of image reconstruction [1], [8], [12] can give better or worse results depending
on the structure of the object. The accuracy of the input data is proportional
to the quality of measuring devices [8], [12]. Whereas there are almost no works
on taking into account the current density distributions along the sections of
electrode application to the test body (usually, the corresponding values are
averaged). According to several comparisons with the results of the software
product EIDORS [1], taking this data into account can significantly improve
the quality of the obtained images [2]. To this aim, we described a methodology
of image reconstruction, which assumes (for each of the respective injections)
the presence of only equipotential lines (with the given distributions of local
velocities or values of stream functions) and streamlines (with known potential
distributions on them) at the boundary of the domain (see [2], [3], [5], [6]).
This was done, in particular, with using the numerical quasiconformal mapping
method, the advantages of which are described in [4]. Without reducing the
generality, in further comparisons, we will use the results given in the article
[3], where the reconstruction of the image is carried out in the presence of
smooth local bursts of homogeneous materials. The corresponding conductivity
coefficient (CC) is sought in the form:

σ(x, y, χ, α1, ..., αs, ε1, ..., εs, x1, ..., xs, y1, ..., ys) = χ+

+
∑s

k=1
αk/

(

1 +
(

(x− xk)
2 + (y − yk)

2
)

/εk

)

(1)

in [3], where χ, αk, εk, xk, yk (k = 1, ..., s) are unknown parameters. Recon-
struction of the image is carried out by alternating iterative application of the
quasiconformal mapping method with fixed coordinates of boundary nodes and
minimization the functional of sum of squared residuals between calculated CC
distributions using the data from all injections.

A significant obstacle to asserting the prospects for further improvements
of this approach is that it has been little applied in practice. And although
there are certain successful comparisons with the results of the software prod-
uct EIDORS [2], nevertheless, the corresponding methodology has not been
sufficiently studied. To compare the methods, we consider the case of opti-
mizing the sum of squared residuals between a priori known and iteratively
calculated boundary values of quasipotential and stream functions [1], [5], [7],
[8], [12], instead of the functional minimization options proposed in [2], [3].
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This is the purpose of this work.

2. Numerical methods of complex analysis for solving the problem

of applied quasipotential tomography

To date, attempts to minimize the corresponding functional precisely by numer-
ical quasiconformal mapping methods have taken place in [5]. Similar to our
previous works [2], [3], [6], it is assumed that quasiideal processes of particle mo-
tion (charges, fluids, etc.) take place in a single-connected curvilinear domain
(plate, tomographic section, etc.) Gz (Fig. 1(a)) bounded by a smooth closed
curve ∂Gz = {(x, y) : x = x̃(τ), y = ỹ(τ), 0 ≤ τ ≤ 2π, x̃(0) = x̃(2π) = x̃0,
ỹ(0) = ỹ(2π) = ỹ0, where x̃(τ), ỹ(τ) are defined continuously differentiated
functions, O(x̃0, ỹ0) is given an initial starting point} due to the action

of potential ϕ
(p)
∗ , ϕ∗(p) differences (ϕ∗(p) > ϕ

(p)
∗ ), which are given on selected

equipotential lines ApBp, CpDp, where Ap, Bp, Cp, Dp are marked points on
∂Gz ; p = 1, 2, ... is injection number (see, e.g. [5], [6]); BpCp and ApDp

are impenetrable boundary streamlines. We model the injection of current
through the tomographic cross-section, similarly to [2], [3], [5], [6] by sets

of values {τ
(p)
A , τ

(p)
B , τ

(p)
C , τ

(p)
D }, according to which Ap =

(

x̃(τ
(p)
A ), ỹ(τ

(p)
A )
)

,

Bp =
(

x̃(τ
(p)
B ), ỹ(τ

(p)
B )
)

, Cp =
(

x̃(τ
(p)
C ), ỹ(τ

(p)
C )
)

, Dp =
(

x̃(τ
(p)
D ), ỹ(τ

(p)
D )
)

. The

boundary of the Gz domain with the given four marked points corresponding

to this injection is denoted by ∂G
(p)
z (z(p) = x(p) + iy(p)).

Ap

Bp

Cp

Dp

Gz
(p)

x

y

Ap

Cp

Dp

Bp

Gω
(p)

φ

ψ

φ φ*
*(p) (p)0

Q(p)

(a) (b)

Figure 1: Tomographic cross-section Gz (a) and corresponding com-

plex quasipotential domains G
(p)
ω (b)

Identification of CC σ = σ(x, y) parameters (and concomitant finding ϕ(p) =



906 A. Bomba, M. Boichura

ϕ(p)(x, y) functions with the known structure of the latter) in such an environ-
ment is traditionally carried out by solving equations of elliptic type [2], [3], [5],
[6], [7], [8], [12]

div(~j(p)) = 0 (2)

under boundary conditions

ϕ|ApBp
= ϕ

(p)
∗ , ϕ|CpDp

= ϕ∗(p), (3)

ϕ′(p)
n

∣

∣

BpCp = ϕ′(p)
n

∣

∣

ApDp = 0, (4)

ϕ(p)(M)
∣

∣

BpCp = ϕ̄(p)(M), ϕ(p)(M)
∣

∣

ApDp = ϕ(p)(M), (5)

σϕ′(p)
n

∣

∣

ApBp = Ψ
(p)
∗ (M), σϕ′(p)

n

∣

∣

CpDp = Ψ∗(p)(M), (6)

whereM is a running point of the corresponding curve; ~j(p) =
(

j
(p)
x (x, y), j

(p)
y (x, y)

)

is a current density (local velocity), which satisfies Ohm’s (Darcy’s) law ~j(p) =
σ gradϕ(p) [7], [8], [12]; ϕ(p) = ϕ(p)(x, y) is quasipotential; ~n is an exter-
nal normal to the corresponding section of the domain boundary. Functions

ϕ̄(p)(M) = ϕ̄(p)(τ, ...) (τ
(p)
C ≤ τ ≤ τ

(p)
B ), ϕ(p)(M) = ϕ(p)(τ, ...) (τ

(p)
A ≤ τ ≤ τ

(p)
D ),

Ψ
(p)
∗ (M) = Ψ

(p)
∗ (τ, ...) (τ

(p)
B ≤ τ ≤ τ

(p)
A ), Ψ∗(p)(M) = Ψ∗(p)(τ, ...) (τ

(p)
D ≤

τ ≤ τ
(p)
C ), as in [2], [3], [6], can be constructed by interpolating their ex-

perimentally obtained values ϕ̄
(p)

ī(p)
, ϕ

(p)

i(p)
, Ψ

(p)

∗j
(p)
∗

, Ψ
∗(p)

j∗(p)
having some τ = τ̄

(p)

ī(p)
,

τ = τ
(p)

i(p)
, τ = τ

(p)

∗j
(p)
∗

, τ = τ
∗(p)

j∗(p)
at sections BpCp, ApDp, ApBp, CpDp, re-

spectively (ϕ
(p)
∗ ≤ ϕ

(p)

i(p)
≤ ϕ∗(p), ϕ

(p)
∗ ≤ ϕ̄

(p)

ī(p)
≤ ϕ∗(p), Ψ

(p)

∗j
(p)
∗

> 0, Ψ
∗(p)

j∗(p)
> 0,

0 ≤ ī(p) ≤ m̄∗(p)+1, 0 ≤ i(p) ≤ m
(p)
∗ +1, 0 ≤ j

(p)
∗ ≤ n

(p)
∗ +1, 0 ≤ j∗(p) ≤ n∗(p)+1).

We introduce ψ(p)(x, y) functions [4] (with, similarly, a known structure),
which are complexly conjugated to ϕ(p)(x, y) and replace equations (2) and
conditions (4) and (6) by

σϕ′(p)
x = ψ′(p)

y , σϕ′(p)
y = −ψ′(p)

x ; (7)

ψ(p)
∣

∣

∣

ApDp

= 0, ψ(p)
∣

∣

∣

BpCp

= Q(p); (8)

ψ(p)(M)
∣

∣

ApBp = ψ
(p)
∗ (M), ψ(p)(M)

∣

∣

CpDp = ψ∗(p)(M), (9)

where
∫

MN
σ ∂ϕ

(p)

∂n
dl = Q(p), M ∈ BpCp, N ∈ ApDp ; G

(p)
ω = {(ϕ,ψ) : ϕ

(p)
∗ ≤

ϕ ≤ ϕ∗(p), 0 ≤ ψ ≤ Q(p)
}

; Q(p) are discharges of a vector field (current) through



IDENTIFICATION OF BURST PARAMETERS USING... 907

contact surfaces (ApBp and CpDp); ψ
(p)
∗ (M) =

∫

ApM
Ψ

(p)
∗ (M)dl, ψ∗(p)(M) =

∫

DpM
Ψ∗(p)(M)dl; dl is an arc element of the corresponding curve. Then we

come to a series of more general boundary value problems on quasiconfor-

mal mappings ω = ω(p)(z) = ϕ(p)(x, y) + iψ(p)(x, y) of physical domains G
(p)
z

(Fig. 1(a)) to the corresponding domains of complex quasipotential G
(p)
ω (Fig. 1(b))

under the condition of CC σ = σ(x, y) identification [2], [3], [5], [6].
In [5] it is proposed to solve the problem (1), (3), (5), (7)-(9) under the

condition of linearization of ϕ(p)(x, y) and ψ(p)(x, y) functions, their substitu-
tion into the functional (built from considerations of minimizing the calculated
and a priori known quasipotential and stream functions at the boundary of the
studied domain) of

Φ =

p̃
∑

p=1





∑

N1∈ApBp

(

ψ
(p)
∗ (N1)− ψ(p)(N1)

)2
+

+
∑

N2∈BpCp

(

ϕ̄(p)(N2)− ϕ(p)(N2)
)2

+
∑

N4∈ApDp

(

ϕ(p)(N4)− ϕ(p)(N4)
)2

+

+
∑

N3∈CpDp

(

ψ∗(p)(N3)− ψ(p)(N3)
)2



+ ηΩ[σ] → min (10)

type and its optimization with respect to the sought CC σ = σ(x, y), where

N1, N2, N3 and N4 are running points with a priori known ψ
(p)
∗ (N1), ϕ̄

(p)(N2),
ψ∗(p)(N3), ϕ

(p)(N4) and calculated ψ(p)(N1), ϕ
(p)(N2), ψ

(p)(N3), ϕ
(p)(N4) val-

ues of quasipotential and stream functions at the sections ApBp, BpCp, CpDp,
ApDp, respectively; η is a regularization parameter (which is solved accord-
ing to the principle of generalized residues [13]); Ω[σ] = (δσ)2 is a stabilizing
functional, δ is Kronecker symbol.

The corresponding problems in x(p) = x(p)(ϕ,ψ), y(p) = y(p)(ϕ,ψ) variables

on quasiconformal mappings of complex quasipotential domains G
(p)
ω (Fig. 1(b))

on the corresponding physical domains G
(p)
z (Fig. 1(a)) under the condition of

identification of CC σ = σ(x, y) [2], [3], [5], [6] consist in finding a solution of
the system of generalizations of Laplace equations under boundary conditions
and conditions of orthogonality at the boundary [4], and minimization of the
functional (10).

The construction of a difference analogue of functional (10) in [5] is proposed
to be carried out with respect to a finite so-called base set of points on the
boundary. Based on the necessary condition for the existence of an extremum of
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the function of many variables, a system of linear algebraic equations A ·~σ = B
with an unknown vector ~σ = (σ1, σ2, ..., σn(p)

∗ +m̄(p)+n∗(p)+m(p))
T is obtained.

Finally, the sought σ = σ(x, y) function is approximated using interpolation in
a predetermined set of boundary and internal (base) points.

3. Optimization of method

The disadvantages of the described approach are the following [12]: the need
for interpolation of the CC and very frequent use of functions formed in this
way, which, obviously, significantly slows down the speed of calculations; the
linearization of quasipotential and stream functions, in combination with the
finite number of injections and the “noise” in the input data, significantly “dis-
torts” the result; the use of the matrix inversion procedure in an explicit form,
because of which the computational process can be unstable if the initial CC
approximation is unsuccessfully selected. Therefore (primarily due to particu-
larly “strict” conditions of convergence), using the method [5] is problematic
and corresponding comparisons with the approach described in [3] are only
advisable in a very limited class of cases.

We propose an approach similar to [5] to solve the problem of image recon-
struction based on minimization of the functional (10), but instead of linearizing

the flow and quasipotential functions, we use the expression σ ∂ϕ
(p)

∂l
= ∂ψ(p)

∂s
, that

follows from Ohm’s law and generalizations of the Cauchy-Riemann conditions,
where ∂l and ∂s are elements of lengths along streamlines and equipotential
lines, respectively. In this case

ψ(p)(N1) = ψ(p)(M1) +
∫

M1N1
ϕ′(p)
l σds,

ϕ(p)(N2) = ϕ(p)(M2) +
∫

M2N2
ψ′(p)
s /σdl,

ψ(p)(N3) = ψ(p)(M3) +
∫

M3N3
ϕ′(p)
l σds,

ϕ(p)(N4) = ϕ(p)(M4) +
∫

M4N4
ψ′(p)
s /σdl.

(11)

Here M1, M2, M3, M4 and N1, N2, N3, N4 are the running points on the
ApBp, BpCp, CpDp, ApDp sections, respectively (M1 ∈ [Ap, N1), M2 ∈ [Bp, N2),
M3 ∈ [Dp, N3), M4 ∈ [Ap, N4)). We obtain the final form of the minimizing
functional by substituting (11) into (10) for ηΩ =

∑s
k=1(ηkα

2
k + ηs+kε

2
k) [6],

where ηk are regularization parameters. It should be noted that the adjustment
(regularization), first of all, requires those components of the CC, which are rel-
atively little affected by a priori (exact) data from the border. These are αk, εk,
xk, yk parameters. We assume that we do not have a priori information about
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the coordinates of the bursts (because in the work [3], with which we compare
the results, such information was not used). There are αk and εk parameters
left. The latter especially need regularization, because the corresponding bursts
become too flat when εk values are very large and they in some way replace the
χ parameter.

We present the corresponding difference analogues of problem (1), (3), (5),

(7)-(10) taking into account (11) in the grid domains G
γ(p)
ω =

{

(ϕ
(p)
i , ψ

(p)
j ) :

ϕ
(p)
i = ϕ

(p)
∗ +i∆ϕ(p), i=0,m(p)+1; ψ

(p)
j = j∆ψ(p), j=0,n(p)+1; ∆ϕ(p) = ϕ∗(p)−ϕ

(p)
∗

m(p)+1
,

∆ψ(p) = Q(p)

n(p)+1
, γ(p)=∆ϕ(p)

∆ψ(p) , m
(p), n(p) ∈ N

}

similarly to [2], [3], [4], [5], [6]. In

particular, the systems of generalizations of Laplace equations and orthogonal-
ity conditions for boundary nodal points are approximated using a “cross-type”
scheme, and left and right first-order difference schemes, respectively, where γ(p)

are quasiconformal invariants [4] for the corresponding domains G
γ(p)
ω .

It is expedient to construct the difference analogue of the functional (10) in
such a way that a priori data at the boundary are taken into account as much
as possible on the one hand, and quasiconformity errors do not accumulate
on the other. The latter reach quite large values, especially in the vicinity of
angular boundary points of streamlines and equipotential lines, which cause
instability of the iterative process. For this purpose, applying the formula of
the left rectangles to the integrals included in (10) for M1 = Ap, M2 = Bp,
M3 = Dp, M4 = Ap and performing elementary transformations, we obtain:

Φ = Φ∗ + Φ̄ + Φ∗ +Φ+ Ω → min, (12)

where

Φ =
p̃,m(p)+1
∑

p,i=1

(τ
(p,l)
ADi−1

<τ
(p)
i

≤τ
(p,l)
AD

i
)

(

ϕ
(p)
∗ − ϕ

(p)
i +

(

i−1
∑

i2=1

σ
(l)
i2−1,0

σ
(l+1)
i2−1,0

+

+
σ
(l)
i−1,0

σ
(l+1)
i−1,0

√

(x
(p)
i −x

(p,l)
i−1,0)

2
+(y

(p)
i −y

(p,l)
i−1,0)

2

(x
(p,l)
i,0 −x

(p,l)
i−1,0)

2
+(y

(p,l)
i,0 −y

(p,l)
i−1,0)

2

)

∆ϕ(p)

)2

,

Φ∗ =
p̃,n

(p)
∗ +1
∑

p,j∗=1

(τ
(p,l)
ABj−1

<τ
(p)
∗j∗

≤τ
(p,l)
ABj

)

(

−ψ
(p)
∗j∗

+

(

j−1
∑

j2=1

σ
(l+1)
0,j2−1

σ
(l)
0,j2−1

+

+
σ
(l+1)
0,j−1

σ
(l)
0,j−1

√

(x
(p)
∗j∗

−x
(p,l)
0,j−1)

2
+(y

(p)
∗j∗

−y
(p,l)
0,j−1)

2

(x
(p,l)
0,j −x

(p,l)
0,j−1)

2
+(y

(p,l)
0,j −y

(p,l)
0,j−1)

2

)

∆ψ(p,l)

)2

,
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Φ̄ =
p̃,m̄(p)+1
∑

p,̄i=1

(τ
(p,l)
BCi−1

<τ̄
(p)

ī
≤τ

(p,l)
BCi

)

(

ϕ̄
(p)

ī
− ϕ

(p)
∗ −∆ϕ(p)

(

i−1
∑

i2=1

σ
(l)

i2−1,n(p)+1

σ
(l+1)

i2−1,n(p)+1

+

+
σ
(l)

i−1,n(p)+1

σ
(l+1)

i−1,n(p)+1

√

√

√

√

(x̄
(p)

ī
−x

(p,l)

i−1,n(p)+1
)
2
+(ȳ

(p)

ī
−y

(p,l)

i−1,n(p)+1
)
2

(x
(p,l)

i,n(p)+1
−x

(p,l)

i−1,n(p)+1
)
2
+(y

(p,l)

i,n(p)+1
−y

(p,l)

i−1,n(p)+1
)
2









2

,

Φ∗ =
p̃,n∗(p)+1
∑

p,j∗=1

(τ
(p,l)
CDj−1

<τ
∗(p)
j∗

≤τ
(p,l)
CDj

)

(

ψ
∗(p)
j∗ −∆ψ(p,l)

(

j−1
∑

j2=1

σ
(l+1)

m(p)+1,j2−1

σ
(l)

m(p)+1,j2−1

+

+
σ
(l+1)

m(p)+1,j−1

σ
(l)

m(p)+1,j−1

√

√

√

√

(x
∗(p)
j∗

−x
(p)

m(p)+1,j−1
)
2
+(y

∗(p)
j∗

−y
(p)

m(p)+1,j−1
)
2

(x
(p)

m(p)+1,j
−x

(p)

m(p)+1,j−1
)
2
+(y

(p)

m(p)+1,j
−y

(p)

m(p)+1,j−1
)
2









2

;

x
(p)
i,j = x(p)(ϕ

(p)
i , ψ

(p)
j ), y

(p)
i,j = y(p)(ϕ

(p)
i , ψ

(p)
j ), σ

γ(p)
i,j = σ

(

x
(p)
i,j , y

(p)
i,j

)

, (x
(p)
i,j , y

(p)
i,j ) ∈

G
γ(p)
z ; l = 0, 1, ... is an approximation number; τ

(p)
i , τ

(p)
∗j∗
, τ̄

(p)

ī
, τ

∗(p)
j∗ (i =

0,m(p) + 1, ī = 0, m̄(p) + 1, j∗ = 0, n
(p)
∗ + 1, j∗ = 0, n∗(p) + 1) are a priori known

parameters of setting the (x
(p)
i , x

(p)
i ), (x̄

(p)

ī
, x̄

(p)

ī
), (x

(p)
∗j∗
, x

(p)
∗j∗

), (x
∗(p)
j∗ , x

∗(p)
j∗ ) points

(by x = x̃(τ), y = ỹ(τ)) functions) on the ApDp, BpCp, ApBp, CpDp sections

with the corresponding values of the potential and stream functions ϕ
(p)
i , ϕ̄

(p)

ī
,

ψ
(p)
∗j∗
, ψ

∗(p)
j∗ ;m(p), m̄(p), n

(p)
∗ , n∗(p) is the number of such points; τ

(p,l)
ADi

, τ
(p,l)
BCi

, τ
(p,l)
ABj

,

τ
(p,l)
CDj

(i = 0,m(p) + 1, j = 0, n(p) + 1) are the calculated parameters of setting
the boundary nodes on the ApDp, BpCp, ApBp, CpDp sections, respectively.

The algorithm for solving the initial problem consists of alternate pa-
rameterization of quasiconformal invariants, internal and boundary nodes of

mesh domains G
γ(p)
z , CC with using the ideas of the block iteration method

[4]. Namely: we set the number of injections p̃, the boundary of domains G
(p)
z

(by functions x = x̃(τ), y = ỹ(τ)), parameters τ
(p)
A , τ

(p)
B , τ

(p)
C , τ

(p)
D , quasipo-

tentials ϕ
(p)
∗ , ϕ∗(p), parameters m(p), n(p) of partitioning of domains G

γ(p)
ω , the

value of δ1, which is responsible for the accuracy of the algorithm. In this case,

we calculate the coordinates of the angular points Ap, Bp, Cp, Dp on ∂G
(p)
z

and ∆ϕ(p) = ϕ∗(p)−ϕ
(p)
∗

m(p)+1
. Then set the values of local velocities Ψ

(p)
∗j , Ψ

∗(p)
j (and,

therefore, the stream functions ψ
(p)
∗j , ψ

∗(p)
j ) and potentials ϕ̄

(p)
i , ϕ

(p)
i for some

arguments τ
(p)
∗j , τ

∗(p)
j , τ̄

(p)
i , τ

(p)
i (results of physical measurements), respectively.

The initial approximations of the coordinates of the boundary x
(p,0)
0,j , y

(p,0)
0,j ,
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x
(p,0)

i,n(p)+1
, y

(p,0)

i,n(p)+1
, x

(p,0)

m(p)+1,j
, y

(p,0)

m(p)+1,j
, x

(p,0)
i,0 , y

(p,0)
i,0 (0 ≤ i ≤ m(p) + 1, 0 ≤ j ≤

n(p)+1, p = 1, p̃) and internal x
(p,0)
i,j , y

(p,0)
i,j (1 ≤ i ≤ m(p), 1 ≤ j ≤ n(p), p = 1, p̃)

nodes, and the parameters χ(0), α
(0)
k , ε

(0)
k , x

(0)
k , y

(0)
k (k = 1, ..., s) that determine

the CC, are formed, for example, as in [2], [3], [4], [6]. In this case, we calculate
the initial approximations of the values of quasiconformal invariants [4] and
∆ψ(p,0) = ∆ϕ(p)/γ(p,0).

The iterative process of reconstruction consists of the following stages: the
coordinates of boundary and internal nodes, quasiconformal invariants and
∆ψ(p,r) = ∆ϕ(p)/γ(p,r) (here r = 0, 1, ... is the iteration step number) are spec-
ified sequentially [4]; this procedure is repeated until the conditions for com-
pleting the iterative process of constructing velocity fields are fulfilled, among
which may be [2], [4] with the accuracy parameter δ1; functional (12) is mini-

mized for the sought χ(l), α
(l)
k , ε

(l)
k , x

(l)
k , y

(l)
k (k = 1, ..., s) using one of the global

optimization methods (see, e.g., [11]); it is checked whether the functional value
(12) is less than δ2. In case of non-fulfillment of this condition, we start the iter-
ative process anew, otherwise, we build the corresponding reconstructed image
and, if necessary, electrodynamic meshes, complex quasipotential domains or
calculate current density fields using the formula ~j(p) = σ(x, y) gradϕ(p) etc.
[3], [4].

4. The results of approximate calculations

Let us make a series of comparisons between the results of numerical experi-
ments of image reconstruction obtained by the algorithm described above (for
definiteness, we will call it algorithm A) and described in [3] (similarly we will
call it algorithm B), using the simulated annealing method [11] to minimize
functional (12), with the input data given in [3], in particular:

x̃ (τ) = 150 cos τ, ỹ (τ) = 100 sin τ,

τ
(p)
A = π/8+ (p− 1) π/p̃ + π, τ

(p)
B = τ

(p)
A − π/4,

τ
(p)
C = τ

(p)
A − π, τ

(p)
D = τ

(p)
C − π/4,m(p) = 100, δ1 = 25,

ϕ
(p)
∗ = 0, ϕ∗(p) = 1, χ(0) = ε

(0)
k = 1, α

(0)
k = x

(0)
k = y

(0)
k = 0, (13)

0.2 ≤ χ ≤ 1.5, 0 ≤ αk ≤ 2, 10−2 ≤ εk ≤ 105,

−150 ≤ xk ≤ 150,−100 ≤ yk ≤ 100 (k = 1, ..., s) ,
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ηk = 0.01(k = 1, s), ηk = 0.000001 (k = s+ 1, 2s).

Here, the choice of parameters τ
(p)
A , τ

(p)
B , τ

(p)
C , τ

(p)
D was carried out similarly to

the polar scheme of quasipotential application [9], which is most effective when
inhomogeneities are placed at some distance from the boundary of the domain
and its center; the corresponding s, χ, αk, εk, xk, yk (k = 1, ..., s) are selected
by the same logic (see Table 1(a),

p χ α1 ε1 x1 y1

a) – 0.5 1 200 –95 –12

b) 1,2,3,. . . ,40 0.5039 1.3029 128.625 –102.187 –13.0209

c) 1,2,3,. . . ,40 0.4727 1.1719 278.497 –80.718 –8.7694

d) 1,2,3,. . . ,20 0.4744 1.1712 274.7286 –80.7618 –8.4726

e) 1,2,3,. . . ,20 0.4999 1.2796 126.1498 –106.09 –14.619

f) 1,9,17,25,33 0.5127 1.2663 124.846 –109.013 –19.6638

g) 1,9,17,25,33 0.4722 1.198 267.8533 –81.2635 –8.7357

h) 1 0.944 2 202.784 –101.66 –72.812

i) 1 0.4857 0.4495 993.0104 –82.576 –17.6735

j) 20 0.5307 2 235.9537 –100.033 –72.1579

k) 20 0.4421 1.9348 278.815 –74.9674 –7.5969

Table 1: CC distributions for examples with one local burst,
where (a) is an etalon, (b, d, f, h, j) and (c, e, g, i, k) are calcu-
lated according to the algorithms A and B, respectively

Table 2(a), Table 2(c)). The values of the parameters Ψ
(p)
∗j , Ψ

∗(p)
j , ϕ̄

(p)
i ,

ϕ
(p)
i (1 ≤ p ≤ p̃) in [3] were obtained by the following algorithm: p̃ prob-

lems (1), (3), (5), (7)-(9) of modeling the quasiideal stream using the method
described, e.g., in [4] with the accuracy parameter δ0 = 25 · 10−6 (the larger
this value, the larger “noise” is simulated in experimental data) for given CC
using either Table 1(a) or Table 2(a) or Table 2(c) data (depending on the

considered numerical experiment) were solved; parameters τ
(p)
∗j , τ

∗(p)
j , τ̄

(p)
i , τ

(p)
i

and corresponding stream ψ
(p)
∗j , ψ

∗(p)
j and quasipotential ϕ̄

(p)
i , ϕ

(p)
i functions

were “memorized”; Ψ
(p)
∗j , Ψ

∗(p)
j were calculated according to the difference rep-

resentations of formulas Ψ
(p)
∗ (M) = ∂ψ

(p)
∗ (M)
∂l

,Ψ∗(p)(M) = ∂ψ∗(p)(M)
∂l

. It is worth
noting that here δ1 was taken to be orders of magnitude larger than δ0, since
it makes no sense to achieve high accuracy of reconstruction when there are
significant errors in the input data [8], [12]. Small values of δ1 significantly slow
down the computational process, which, as evidenced by a number of calculated
results, is impractical.

Problems (1), (3), (5), (7)-(9) are solved according to algorithms A and
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B for data (13) and with additional conditions corresponding to Table. 1(a),
where the parameters of a single burst are identified for different numbers of
injections; the results are given in Table 1(b)-Table 1(k). The corresponding
etalon and selected reconstructed images are presented in Fig. 2.

etalon p=1,40

(a) (b)

p=1,40 p=1,9,17,25,33

(c) (d)

p=1,9,17,25,33

0.4 – 0.5

0.7 – 0.8

1.0 – 1.1

1.3 – 1.4

1.6 – 1.7

1.9 – 2.0

(e)

Figure 2: CC distributions for an example with a local burst accord-
ing to the algorithms A (b, d) and B (c, e) for given etalon (a)

We see that the residuals of coordinates of the reconstructed bursts in com-



914 A. Bomba, M. Boichura

parison with the etalon in the case of algorithms A and B for different numbers
of injections are as follows: 7.2589 and 14.119, 11.3951 and 14.6686, 15.972
and 14.6428, 61.1756 and 13.6581, 60.3681 and 20.5108, and correspond to Ta-
ble 1(b)-(f). Considering that impedance tomography methods are most often
used for cases of identifying the locations of inhomogeneities [8], [12], algorithm
A showed better results than B for s = 1 and presence of data from a large
number of injections. Moreover, the first of them made it possible to more
accurately identify the parameter χ.

Let us now demonstrate the effectiveness of algorithm A for the case of
a larger number of bursts. We obtained the results shown in Table 2(b) and
Fig. 3(b) under additional conditions in accordance with Table 2(a) (Fig. 3(a))
and (13). In this, the coordinate residuals of the first and second bursts for
algorithms A and B, respectively, are as follows: 0.7105, 7.8408 (Table 2(b)) and
2.2361, 28.2312 (Table 2(c)). Similarly, in the case of A, χ is better identified.
That is, again, algorithm A, in comparison with B, gives significantly more
accurate results.

Comparing the results of algorithms A (Table 2(e)) and B (Table 2(f))
(and corresponding Fig. 3(e) and Fig. 3(f)) under the data (13) and additional
conditions previously obtained using Table 2(d), again, the parameters xk, yk
(k = 1, ..., s) are identified more accurately in the first case. The corresponding
coordinate residuals of the first, second and third bursts in comparison with
the etalon (Table 2(d), Fig. 2(d)) for algorithms A and B are as follows: 21.06,
13.6522, 7.8895 and 15.2643, 19.2354, 7.2111. Similarly, using algorithm A,
parameter χ is identified much better.

s χ α1 ε1 x1 y1 α2 ε2 x2 y2 α3 ε3 x3 y3
a) 2 0.5 1 200 –95 –12 0.5 800 0 50 – – – –
b) 2 0.5 1.3 137 0 58 1.4 133 –96 –12 – – – –
c) 2 0.2 0.6 10505 11 24 0.8 509 –96 –10 – – – –
d) 3 0.5 1 200 –80 30 0.5 1000 50 50 0.3 2000 0 –80
e) 3 0.6 1 96 –3 –73 0.9 99 –83 51 1 113 48 64
f) 3 0.2 0.5 1852 –88 17 0.6 8944 47 31 0.3 2487 –6 –84

Table 2: CC distributions for examples with two (a – c) and
three (d – f) local bursts, where (a, d) are etalons, (b, e) and (c,
f) are calculated according to algorithms A and B, respectively
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etalon p=1,20

(a) (b)

p=1,20 etalon

(c) (d)

p=1,20 p=1,20

(e) (f)

Figure 3: CC distributions for examples with two (a – c) and
three (d – f) local bursts according to the algorithms A (b, e)
and B (c, f) for given etalons (a, d)

5. Conclusion

The complex analysis methodology (method and algorithm) for solving the
problems of applied quasipotential tomography developed by us, which assumes
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(for each of the respective injections) the presence of only equipotential lines
(with the given distributions of local velocities or values of stream functions)
and streamlines (with known potential distributions on them) at the domain
boundary is modified. This modification involves the application of velocities
equality condition using as data the stream and quasipotential functions instead
of the procedure of their linearization. The corresponding algorithm involves
minimizing the sum of squares of the differences between the calculated and
a priori known functions of quasipotential and stream at the boundary of the
investigated domain during the alternate parameterization of quasiconformal

invariants, internal and boundary nodes of mesh domains G
γ(p)
z , conductivity

coefficient using the ideas of the block iteration method. According to the
results of numerical calculations of image reconstruction of the environment
with existing local bursts, the efficiency of the functional application of the
proposed structure is shown in comparison with [3]. Significant advantages of
the developed algorithm are the possibility for more accurate identification of
coordinates of the sought bursts and their clear separation.

We plan to use both algorithms in combination, taking into account their
advantages. Namely: to assess the possibility of extending the functional (10)
to space and anisotropy; try to introduce regularization into the algorithm [3];
identify the parameters of piecewise homogeneous and piecewise inhomogeneous
anisotropic media, in particular using the functional (10) and conditions of
non-ideal contact [10] both inside the object and at sections of quasipotential
applications (the latter provides the possibility of implementing a complete
electrode model given in [8]).
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