International Journal of Applied Mathematics

Volume 33 No. 5 2020, 737-751

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) $\mathbf{doi:}$ http://dx.doi.org/10.12732/ijam.v33i5.1

ON α -ABSORBING SUBMODULES

Thawatchai Khumprapussorn
Department of Mathematics, Faculty of Science
King Mongkut's Institute of Technology Ladkrabang
Bangkok 10520, THAILAND

Abstract: Let R be a commutative ring with identity. For an R-module M, the notion of α -absorbing submodules and weakly α -absorbing submodules are defined. We study some basic properties of α -absorbing submodules and weakly α -absorbing submodules. Also, we give some characterizations of them.

AMS Subject Classification: 16D80, 16D99

Key Words: α -absorbing submodule; α -prime submodule; weakly α -absorbing submodule

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and all modules are unital left R-modules. We recall that a proper submodule P of M is called a prime submodule of M if for every $r \in R$ and $m \in M$, $rm \in P$ implies that $m \in P$ or $r \in (P : M)$.

In [2], the notion of α -prime submodules is introduced, a proper submodule P of M is said to be an α -prime submodule of M provided that whenever $r \in R$ and $m \in M$ such that $r(m+m) \in P$, we have $r+r \in (P:M)$ or $m+m \in P$. Clearly, every prime submodule is α -prime.

Received: February 17, 2020 © 2020 Academic Publications

On the \mathbb{Z} -module \mathbb{Z} , $p\mathbb{Z}$ is an α -prime submodule of \mathbb{Z} if and only if p=0 or p is a prime number or p=2q where q is a prime number. This result obtains that for all prime numbers q, $2q\mathbb{Z}$ is an α -prime submodule of \mathbb{Z} but $2q\mathbb{Z}$ is not a prime submodule of \mathbb{Z} .

In [1], A. Darani and F. Soheilina defined a proper submodule P of M to be a 2-absorbing submodule if for each $r, s \in R$ and every $m \in M$ such that $rsm \in P$, we have $rs \in (P : M)$ or $rm \in P$ or $sm \in P$.

On the \mathbb{Z} -module \mathbb{Z} , $p\mathbb{Z}$ is a 2-absorbing submodule of \mathbb{Z} if and only if p=0 or p is a prime number or p=qr where q and r are prime numbers.

In this paper we extend the concept of 2-absorbing submodules to α -absorbing submodules.

Definition 1. A proper submodule P of M is an α -absorbing submodule of M if for each $r, s \in R$ and every $m \in M$ such that $rs(m+m) \in P$, we have $rs + rs \in (P:M)$ or $r(m+m) \in P$ or $s(m+m) \in P$.

Example 2. Every α -prime submodule of a module is an α -absorbing submodule. However, $8\mathbb{Z}$ is α -absorbing but is not α -prime.

Example 3. Every 2-absorbing submodule of a module is an α -absorbing submodule. However, $8\mathbb{Z}$ is α -absorbing but is not 2-absorbing submodule.

Consider \mathbb{Z} as an \mathbb{Z} -module and let $n \in \mathbb{Z}$. Note that $n\mathbb{Z}$ is a α -absorbing submodule of \mathbb{Z} if and only if for all $r, s, m \in \mathbb{Z}$, if $n \mid 2rsm$, then $n \mid 2rs$ or $n \mid 2rm$ or $n \mid 2sm$.

Lemma 4. In the \mathbb{Z} -module \mathbb{Z} , if n = 0, p, pq or 2pq where p and q are prime integers, then $n\mathbb{Z}$ is an α -absorbing submodule of \mathbb{Z} .

Proof. Since every α-prime submodule of a module is an α-absorbing submodule, we have $\{0\}$ and $p\mathbb{Z}$ are α-absorbing submodules where p is a prime integer. Next, let p and q be prime integers. Since every 2-absorbing submodule of a module is an α-absorbing submodule, $pq\mathbb{Z}$ is an α-absorbing submodule of \mathbb{Z} . To show that $2pq\mathbb{Z}$ is an α-absorbing submodule of \mathbb{Z} , let $r,s,m\in\mathbb{Z}$ be such that $2pq\mid 2rsm$. Then $pq\mid rsm$. Hence $\left(p\mid rs \text{ or } p\mid m\right)$ and $\left(q\mid rs \text{ or } q\mid m\right)$. All cases imply that $2pq\mid 2rs$ or $2pq\mid 2rm$ or $2pq\mid 2sm$. Therefore $2pq\mathbb{Z}$ is an α-absorbing submodule of \mathbb{Z} .

Proposition 5. Consider \mathbb{Z} as an \mathbb{Z} -module and let $n \in \mathbb{Z}$. Then $n\mathbb{Z}$ is an α -absorbing submodule of \mathbb{Z} if and only if n = 0 or n is a prime number or n = pq where p and q are prime numbers or n = 2pq where p and q are prime numbers.

Proof. (\rightarrow) Let $n \in \mathbb{Z}$. Assume that $n\mathbb{Z}$ is an α -absorbing submodule of \mathbb{Z} . Suppose that $n \neq 0$ and n is not a prime number and $n \neq pq$ where p and q are prime numbers. Then n = ab where a and b are integers with 1 < a, b < n. Hence a is not prime or b is not prime. Without loss of generality, we assume that a is not prime. Then a = cd where c and d are integers with 1 < c, d < a. Hence n = ab = cdb. This means $2cdb \in n\mathbb{Z}$. That is $n \mid 2cdb$. Therefore $n \mid 2cd$ or $n \mid 2cb$ or $n \mid 2cb$ since n = ab = cdb, we have three cases to consider.

Case 1. $ab \mid 2cd$.

Then $ab \mid 2a$. Hence b = 2. This implies that n = 2cd. Next, we suppose for a contradiction that c is not a prime number or d is not a prime number.

Subcase 1.1. c is not a prime number.

Then $c = c_1c_2$ where c_1 and c_2 are integers with $1 < c_1, c_2 < c$. Hence $n = 2c_1c_2d$. This means $n \mid 2c_1c_2d$. Since $n\mathbb{Z}$ is an α -absorbing submodule of \mathbb{Z} , $n \mid 2c_1c_2$ or $n \mid 2c_1d$ or $n \mid 2c_2d$. since $n = 2c_1c_2d$, we have $d \mid 1$ or $c_2 \mid 1$ or $c_1 \mid 1$ which are contradictions.

Subcase 1.2. d is not a prime number.

Then $c = d_1d_2$ where d_1 and d_2 are integers with $1 < d_1, d_2 < c$. Hence $n = 2cd_1d_2$. This implies that $n \mid 2cd_1d_2$. Since $n\mathbb{Z}$ is an α -absorbing submodule of \mathbb{Z} , $n \mid 2cd_1$ or $n \mid 2cd_2$ or $n \mid 2d_1d_2$. Since $n = 2cd_1d_2$, we have $d_2 \mid 1$ or $d_1 \mid 1$ or $c \mid 1$ which lead to contradictions.

In Case 1, we conclude that n = 2cd where c and d are prime numbers. Case 2. $ab \mid 2cb$.

Then $abd \mid 2cdb$. Since a = cd, we have $abd \mid 2ab$. Hence $d \mid 2$. Therefore d = 2. This obtains that n = 2cb. Similarly to Case 1, we suppose for a contradiction that c is not a prime number or b is not a prime number.

Subcase 2.1. c is not a prime number.

Then $c = c_1c_2$ where c_1 and c_2 are integers with $1 < c_1, c_2 < c$. Hence $n = 2c_1c_2b$. Thus $n \mid 2c_1c_2b$. This implies that $n \mid 2c_1c_2$ or $n \mid 2c_1b$ or $n \mid 2c_2b$. We have that $b \mid 1$ or $c_2 \mid 1$ or $c_1 \mid 1$ which lead to contradictions.

Subcase 2.2. b is not a prime number.

Then $b=b_1b_2$ where b_1 and b_2 are integers with $1 < b_1, b_2 < b$. Hence $n=2cb_1b_2$. Then $n\mid 2cb_1b_2$. This implies that $n\mid 2cb_1$ or $n\mid 2cb_2$ or $n\mid 2b_1b_2$. So $b_2\mid 1$ or $b_1\mid 1$ or $c\mid 1$ which lead to contradictions.

In Case 2, we conclude that n = 2cb where c and b are prime numbers.

Case 3. $ab \mid 2db$.

Then $abc \mid 2cdb$. Since a = cd, we have $abc \mid 2ab$. Hence $c \mid 2$. Therefore c = 2 which leads to n = 2db. We suppose for a contradiction that d is not a prime number or b is not a prime number.

Subcase 3.1. d is not a prime number.

Then $d = d_1d_2$ where d_1 and d_2 are integers with $1 < d_1, d_2 < d$. Hence $n = 2d_1d_2b$. Then $n \mid 2d_1d_2b$. So $n \mid 2d_1d_2$ or $n \mid 2d_1b$ or $n \mid 2d_2b$. This means $b \mid 1$ or $d_2 \mid 1$ or $d_1 \mid 1$ which lead to contradictions.

Subcase 3.2. b is not a prime number. Then $b=b_1b_2$ where b_1 and b_2 are integers with $1 < b_1, b_2 < b$. Hence $n=2db_1b_2$. Thus $n \mid 2db_1b_2$. This implies that $n \mid 2db_1$ or $n \mid 2db_1$ or $n \mid 2b_1b_2$. Therefore $b_2 \mid 1$ or $b_1 \mid 1$ or $d \mid 1$ which lead to contradictions.

In Case 3, we conclude that n = 2db where d and b are prime numbers. Therefore n = 2pq where p and q are prime numbers.

 (\leftarrow) This part follows from Lemma 4.

Example 6. The intersection of two α -absorbing submodules need not to be α -absorbing submodule. For example, $5\mathbb{Z}$ and $12\mathbb{Z}$ are α -absorbing submodules of \mathbb{Z} but $5\mathbb{Z} \cap 12\mathbb{Z} = 60\mathbb{Z}$ is not an α -absorbing submodules of \mathbb{Z} .

Example 7. The intersection of two 2-absorbing submodules need not to be α -absorbing submodule. For example, $15\mathbb{Z}$ and $21\mathbb{Z}$ are 2-absorbing submodules of \mathbb{Z} but $15\mathbb{Z} \cap 21\mathbb{Z} = 105\mathbb{Z}$ is not an α -absorbing submodules of \mathbb{Z} .

2. Properties of α -absorbing submodules

Let (G, +) be a group and $H \subseteq G$. We denote the symbol $\beta(H)$ by $\{h + h \mid h \in H\}$ and $\alpha(H)$ by $\{h \mid h + h \in H\}$. It is clear that $\beta(H) \subseteq H \subseteq \alpha(H)$. If I is an ideal of R, then $\alpha(I)$ and $\beta(I)$ are ideals of R. Furthermore, if N is a submodule of M, then $\alpha(N)$ and $\beta(N)$ are submodules of M.

Let M be a left R-module. If N is a submodule of an R-module M, by (N:M) we mean $\{r \in R \mid rM \subseteq N\}$. For an element $x \in M$ and a submodule N of M, we will denote $\{r \in R \mid rx \in N\}$ with the short form (N:x).

Proposition 8. A proper submodule P of an R-module M is α -absorbing if and only if for all submodules N of M and for all $r, s \in R$,

if $rs\beta(N) \subseteq P$, then $rs + rs \in (P : M)$ or $r\beta(N) \subseteq P$ or $s\beta(N) \subseteq P$.

Proof. (\rightarrow) Assume that P is an α -absorbing submodule of M. Let N be a submodule of M and $r,s \in R$ such that $rs\beta(N) \subseteq P$. Suppose that $rs+rs \notin (P:M)$ and $r\beta(N) \not\subseteq P$ and $s\beta(N) \not\subseteq P$. Then $rx \notin P$ for some $x \in \beta(N)$ and $sy \notin P$ for some $y \in \beta(N)$. There exist $n,m \in N$ such that x=n+n and y=m+m. This implies $rn+rn=rx \notin P$ and $sm+sm=sy \notin P$. We see that $rs(n+n)=rsx \in rs\beta(N) \subseteq P$. Since P is α -absorbing and $rs+rs \notin (P:M)$ and $r(n+n) \notin P$, we have $s(n+n) \in P$. We see again that $rs(m+m)=rsy \in rs\beta(N) \subseteq P$. Since P is α -absorbing and $rs+rs \notin (P:M)$ and $s(m+m) \notin P$, we have $s(n+m) \in P$. We note here that

$$s(n+n) \in P \text{ and } r(m+m) \in P.$$
 (1)

It follows that $rs(m+m+n+n) \in P$. Since P is α -absorbing and $rs+rs \notin (P:M)$, we have $r(m+m+n+n) \in P$ or $s(m+m+n+n) \in P$. By the result (1), $r(n+n) \in P$ or $s(m+m) \in P$ which lead to a contradiction.

 (\leftarrow) Let $r, s \in R$ and $m \in M$ be such that $rs(m+m) \in P$. Then $rs\beta(Rm) \subseteq P$. This implies that $rs+rs \in (P:M)$ or $r\beta(Rm) \subseteq P$ or $s\beta(Rm) \subseteq P$. Hence $rs+rs \in (P:M)$ or $r(m+m) \in P$ or $s(m+m) \in P$. Therefore P is an α -absorbing submodule of M.

Proposition 9. If N_1 and N_2 are α -prime submodules of an R-module M, then $N_1 \cap N_2$ is an α -absorbing submodule of M.

Proof. Assume that N_1 and N_2 are α -prime submodules of an R-module M. Let $r,s\in R$ and $m\in M$ be such that $rs(m+m)\in N_1\cap N_2$. Since N_1 and N_2 are α -prime submodules of M, $\left(rs+rs\in (N_1:M) \text{ or } m+m\in N_1\right)$ and $\left(rs+rs\in (N_2:M) \text{ or } m+m\in N_2\right)$. There are 4 cases to be considered:

- (i) $rs + rs \in (N_1 : M)$ and $rs + rs \in (N_2 : M)$
- (ii) $rs + rs \in (N_1 : M)$ and $m + m \in N_2$
- (iii) $m+m \in N_1$ and $rs+rs \in (N_2:M)$
- (iv) $m+m \in N_1$ and $m+m \in N_2$.

In Case ((i)), this case implies that $rs + rs \in (N_1 \cap N_2 : M)$.

Next, Case ((ii)) is considered. Since $(rs + rs)M \subseteq N_1$ and $m \in M$, $r(sm + sm) = (rs + rs)m \in N_1$. Since N_1 is α -prime, $r + r \in (N_1 : M)$ or $s(m + m) \in N_1$. These results imply that $r(m + m) \in N_1 \cap N_2$ or $s(m + m) \in N_1 \cap N_2$.

The proof of Case ((iii)) is similar to Case ((ii)).

Finally, we consider Case ((iv)). If $m + m \in N_1$ and $m + m \in N_2$, then $r(m+m) \in N_1 \cap N_2$ or $s(m+m) \in N_1 \cap N_2$. Therefore the intersection of each α -prime submodules of M is an α -absorbing submodule of M.

Note that for a submodule N of M and an ideal I of R, we denote $(N :_M I)$ by $\{m \in M \mid Im \subseteq N\}$.

Proposition 10. Let P be a submodule of M. Then the following statement are equivalent:

- (i) P is an α -absorbing submodule of M.
- (ii) If I is an ideal of R such that $IM \nsubseteq P$, then $(P :_M I)$ is an α -absorbing submodule of M.
- (iii) If $r \in R$ such that $rM \nsubseteq P$, then $(P :_M Rr)$ is an α -absorbing submodule of M.

Proof. (i) \rightarrow (ii) Assume that P is an α -absorbing submodule of M. Let I be an ideal of R such that $IM \nsubseteq P$. Then $(P:_M I) \neq M$. Let $r,s \in R$ and $m \in M$ be such that $rs(m+m) \in (P:_M I)$. Then $Irs(m+m) \subseteq P$. Since $Irs(m+m) = rsI(m+m) = rs\beta(Im)$, we have $rs\beta(Im) \subseteq P$. By Proposition 8, $rs + rs \in (P:M)$ or $r\beta(Im) \subseteq P$ or $s\beta(Im) \subseteq P$. Since $(P:M) \subseteq ((P:_M I):M)$ and $\beta(Im) = I(m+m)$, $rs + rs \in ((P:_M I):M)$ or $r(m+m) \in (P:_M I)$ or $s(m+m) \in (P:_M I)$. Therefore $(P:_M I)$ is an α -absorbing submodule of M.

- $(ii) \rightarrow (iii)$ This part is obvious.
- $(iii) \rightarrow (i)$ Assume that (iii) holds. Since the ring R contains the identity 1_R and $(P:_M R) = P$, we have P is an α -absorbing submodule of M.

For an element $x \in M$ and a submodule N of M, we will denote $\{r \in R \mid rx \in N\}$ with the short form (N : x).

Proposition 11. Let P be an α -absorbing submodule of M. Let $m \in M$ and $r, s \in R$ such that $rs + rs \notin (P : M)$. Then

$$(P: rs(m+m)) = (P: r(m+m)) \cup (P: s(m+m)).$$

Proof. Let $a \in (P : rs(m+m))$. Then $rs(am+am) \in P$. Since P is an α -absorbing submodule of M and $rs+rs \notin (P : M)$, $ar(m+m) \in P$ or

 $as(m+m) \in P$. Therefore $a \in (P:r(m+m)) \cup (P:s(m+m))$. Next, the reverse inclusion part is obvious.

For an element $r \in R$ and a submodule N of M, we will denote a submodule $\{m \in M \mid rm \in N\}$ of M by N_r .

Proposition 12. Let P be a submodule of M. Then the following statement are equivalent:

- (i) P is an α -absorbing submodule of M.
- (ii) For each $r, s \in R$, if $rs + rs \notin (P : M)$, then $\alpha(P_{rs}) = \alpha(P_r) \cup \alpha(P_s)$.
- (iii) For each $r, s \in R$, if $rs + rs \notin (P : M)$, then $\alpha(P_{rs}) = \alpha(P_r)$ or $\alpha(P_{rs}) = \alpha(P_s)$.

Proof. (i) \rightarrow (ii) Assume that P is an α -absorbing submodule of M. Let $r,s \in R$ be such that $rs + rs \notin (P:M)$. First, we will show that $\alpha(P_{rs}) \subseteq \alpha(P_r) \cup \alpha(P_s)$. Let $m \in \alpha(P_{rs})$. Then $rs(m+m) \in P$. Since P is an α -absorbing submodule of M, $r(m+m) \in P$ or $s(m+m) \in P$. Hence $m+m \in P_r$ or $m+m \in P_s$. Therefore $m \in \alpha(P_r) \cup \alpha(P_s)$. To show that $\alpha(P_r) \cup \alpha(P_s) \subseteq \alpha(P_{rs})$, let $m \in \alpha(P_r) \cup \alpha(P_s)$. Then $r(m+m) \in P$ or $s(m+m) \in P$. Therefore $rs(m+m) \in P$. This obtains that $m \in \alpha(P_{rs})$.

- $(ii) \rightarrow (iii)$ This part is obvious.
- $(iii) \to (i)$ Assume that for each $r, s \in R$, if $rs + rs \notin (P:M)$, then $\alpha(P_{rs}) = \alpha(P_r)$ or $\alpha(P_{rs}) = \alpha(P_s)$. To show that P is an α -absorbing submodule of M, let $r, s \in R$ and $m \in M$ be such that $rs(m+m) \in P$ and $rs + rs \notin (P:M)$. Then $m \in \alpha(P_{rs})$. By assumption, $\alpha(P_{rs}) = \alpha(P_r)$ or $\alpha(P_{rs}) = \alpha(P_s)$. Then $m \in \alpha(P_r)$ or $m \in \alpha(P_s)$. Hence $r(m+m) \in P$ or $s(m+m) \in P$. Therefore P is an α -absorbing submodule of M.

The next results are inspired by [5].

Lemma 13. Let I be an ideal of R and P be an α -absorbing submodule of M. If $a \in R$ and $m \in M$ and $aI(m+m) \subseteq P$, then $a(m+m) \in P$ or $I(m+m) \subseteq P$ or $Ia \subseteq \alpha((P:M))$.

Proof. Let $a \in R$ and $m \in M$ be such that $aI(m+m) \subseteq P$. We suppose that $a(m+m) \notin P$ and $Ia \nsubseteq \alpha((P:M))$. There exists an element $b \in I$ such that $ab+ab \notin (P:M)$. This implies that $ab(m+m) \in P$. Since P is an α -absorbing submodule of M, $b(m+m) \in P$. To show that $I(m+m) \subseteq P$, let $c \in I$. Then

 $a(b+c)(m+m) \in P$. Since P is α -absorbing, $a(b+c)+a(b+c) \in (P:M)$ or $(b+c)(m+m) \in P$. If $(b+c)(m+m) \in P$, then by $b(m+m) \in P$ it follows that $c(m+m) \in P$. Next, assume that $a(b+c)+a(b+c) \in (P:M)$. Since $ab+ab \notin (P:M)$, $ac+ac \notin (P:M)$. This implies $ac(m+m) \in P$. Since P is α -absorbing, $c(m+m) \in P$. This shows that $I(m+m) \subseteq P$.

Lemma 14. Let I and J be ideals of R and P be an α -absorbing submodule of M. If $m \in M$ and $IJ(m+m) \subseteq P$, then $I(m+m) \subseteq P$ or $J(m+m) \subseteq P$ or $IJ \subseteq \alpha((P:M))$.

Proof. Let $m \in M$ and $IJ(m+m) \subseteq P$. We assume that $I(m+m) \not\subseteq P$ and $J(m+m) \not\subseteq P$. To show that $IJ \subseteq \alpha((P:M))$, let $x \in I$ and $y \in J$. Since $I(m+m) \not\subseteq P$, there exists $a \in I$ such that $a(m+m) \not\in P$ and $aJ(m+m) \subseteq P$. By Lemma 13, $aJ \subseteq \alpha((P:M))$. Moreover,

$$aJ \subseteq \alpha((P:M)) \text{ for all } a \in I \setminus (P:m+m).$$
 (2)

Since $J(m+m) \nsubseteq P$, there exists $b \in J$ such that $b(m+m) \notin P$ and $bI(m+m) \subseteq P$. By Lemma 13, $bI \subseteq \alpha((P:M))$. Moreover,

$$bI \subseteq \alpha((P:M)) \text{ for all } b \in J \setminus (P:m+m).$$
 (3)

Hence

$$ab, ay \text{ and } xb \text{ are elements of } \alpha((P:M)).$$
 (4)

Since $a+x\in I$ and $b+y\in J$, $(a+x)(b+y)(m+m)\in P$. Since P is α -absorbing, $(a+x)(b+y)+(a+x)(b+y)\in (P:M)$ or $(a+x)(m+m)\in P$ or $(b+y)(m+m)\in P$.

If $(a+x)(m+m) \in P$, then $x(m+m) \notin P$, hence $x \in I \setminus (P:m+m)$, so $xy \in \alpha((P:M))$ by equation (2). Similarly, by equation (3), if $(b+y)(m+m) \in P$, then $xy \in \alpha((P:M))$. Finally, assume that $(a+x)(b+y) + (a+x)(b+y) \in (P:M)$. The equation (4) implies that $xy \in \alpha((P:M))$.

Proposition 15. A proper submodule P of an R-module M is α -absorbing if and only if for all ideals I and J of R and for all submodule N of M,

if
$$IJ\beta(N) \subseteq P$$
, then $I\beta(N) \subseteq P$ or $J\beta(N) \subseteq P$ or $IJ \subseteq \alpha((P:M))$.

Proof. Let P be a proper submodule of M.

 (\rightarrow) Assume that P is α -absorbing. Let I and J be ideals of R and N be submodule of M such that $IJ\beta(N)\subseteq P$ and $IJ\nsubseteq\alpha((P:M))$. Note that

 $n+n\in\beta(N)$ for all $n\in N$. By Lemma 14, $J(x+x)\subseteq P$ or $I(x+x)\subseteq P$ for all $x\in N$. If $J(x+x)\subseteq P$ for all $x\in N$, then $J\beta(N)\subseteq P$. Similarly, if $I(x+x)\subseteq P$ for all $x\in N$, then $I\beta(N)\subseteq P$. Next, suppose for a contradiction that there exist elements x and x' of N such that $I(x+x)\nsubseteq P$ and $J(x'+x')\nsubseteq P$. By Lemma 14, we have $J(x+x)\subseteq P$ and $I(x'+x')\subseteq P$. Then $IJ(x+x'+x+x')\subseteq P$. The Lemma 14 implies that $I(x+x'+x+x')\subseteq P$ or $J(x+x'+x+x')\subseteq P$. Since $J(x+x)\subseteq P$ and $J(x'+x')\subseteq P$, we have $J(x+x)\subseteq P$ or $J(x'+x')\subseteq P$ which leads to a contradiction. Hence $J(x)\subseteq P$ or $J(x)\subseteq P$.

 (\leftarrow) This part follows from Proposition 8.

3. Properties of α -prime ideals and α -absorbing ideals

We recall from [2] that a proper ideal I of a ring R is called an α -prime ideal of R if for all $a, b \in R$, if $a(b+b) \in R$, then $a+a \in I$ or $b+b \in I$. We have the following propositions.

Proposition 16. Let P be an α -absorbing submodule of M. Then (P:M) is an α -prime ideal of R if and only if (P:m) is an α -prime ideal of R for all $m \in M \setminus \alpha(P)$.

Proof. (\rightarrow) Assume that (P:M) is an α -prime ideal of R. Let $m \in M$ be such that $m+m \notin P$. Let $a,b \in R$ be such that $a(b+b) \in (P:m)$. Then $a(b+b)m \in P$. Since P is an α -absorbing submodule of M, $ab+ab \in (P:M)$ or $a(m+m) \in P$ or $b(m+m) \in P$. If $a(m+m) \in P$ or $b(m+m) \in P$, then $a+a \in (P:m)$ or $b+b \in (P:m)$. Next, assume that $ab+ab \in (P:M)$. Since (P:M) is an α -prime ideal of R, $a+a \in (P:M)$ or $b+b \in (P:M)$. Since $(P:M) \subseteq (P:m)$, $a+a \in (P:m)$ or $b+b \in (P:m)$. This shows that (P:m) is an α -prime ideal of R.

 (\leftarrow) Assume that (P:m) is an α -prime ideal of R for all $m \in M \setminus \alpha(P)$. Let $a,b \in R$ be such that $a(b+b) \in (P:M)$. Suppose for a contradiction that $a+a \notin (P:M)$ and $b+b \notin (P:M)$. Let $x,y \in M$ be such that $(a+a)x \notin P$ and $(b+b)y \notin P$. Then $x \notin \alpha(P)$ and $y \notin \alpha(P)$. By assumption, (P:x) and (P:y) are α -prime ideals of R. Since $a(b+b)x \in P$ and $a(b+b)y \in P$, we have $a(b+b) \in (P:x)$ and $a(b+b) \in (P:y)$. Then $(b+b)x \in P$ and $(a+a)y \in P$. If $x+y+x+y \in P$, then $ax+ay+ax+ay=a(x+y+x+y) \in P$, so $(a+a)x \in P$ which is a contradiction. Hence $x+y \notin \alpha(P)$. Thus (P:x+y) is an α -prime ideal of R. Since $a(b+b)(x+y) \in P$, $a(b+b) \in (P:x+y)$. This obtains

that $a + a \in (P : x + y)$ or $b + b \in (P : x + y)$. Hence $(a + a)(x + y) \in P$ or $(b + b)(x + y) \in P$. Since $(a + a)y \in P$ and $(b + b)x \in P$, we have $a(x + x) \in P$ or $b(y + y) \in P$ which are contadictions. This proves that $a + a \in (P : M)$ or $b + b \in (P : M)$. Therefore (P : M) is an α -prime ideal of R.

Proposition 17. Let P be an α -absorbing submodule of an R-module M and let $m \in M$ and $r \in R \setminus (P : m + m)$. If (P : M) is an α -prime ideal of R, then (P : m + m) = (P : r(m + m)).

Proof. Assume that (P:M) is an α -prime ideal of R. If $s \in (P:m+m)$, then $s(m+m) \in P$. So $sr(m+m) \in P$. Hence $s \in (P:r(m+m))$. Next, let $s \in (P:r(m+m))$. Then $sr(m+m) \in P$. Since P is an α -absorbing submodule of M and $r \notin (P:m+m)$, we have $s(r+r) \in (P:M)$ or $s(m+m) \in P$. If $s(m+m) \in P$, then $s \in (P:m+m)$. Now, assume that $s(r+r) \in (P:M)$. Since (P:M) is an α -prime ideal of R, $s+s \in (P:M)$ or $r+r \in (P:M)$. If $r+r \in (P:M)$, then $r \in (P:m+m)$ which is a contradiction. Another case, if $s+s \in (P:M)$, then $s(m+m) \in P$. Hence $s \in (P:m+m)$. This proves that (P:m+m) = (P:r(m+m)).

Definition 18. An α -absorbing ideal of a ring R is an α -absorbing submodule of an R-module R.

Let I be a proper ideal of a ring R. Then I is an α -absorbing ideal of R if and only if for each $r, s, t \in R$ such that $rs(t+t) \in I$, we have $r(s+s) \in I$ or $r(t+t) \in I$ or $s(t+t) \in I$.

Proposition 19. If P is an α -absorbing submodule of an R-module M, then (P:M) is an α -absorbing ideal of R.

Proof. Assume that P is an α -absorbing submodule of an R-module M. Let $r, s, t \in R$ such that $rs(t+t) \in (P:M)$. Then $rs(t+t)M \subseteq P$. Suppose that $r(t+t) \notin (P:M)$ and $s(t+t) \notin (P:M)$. Let $x_1, x_2 \in M$ be such that $r(t+t)x_1 \notin P$ and $s(t+t)x_2 \notin P$. Then $rs(t(x_1+x_2)+t(x_1+x_2)) = rs(t+t)(x_1+x_2) \in P$. Since P is an α -absorbing submodule of an R-module M, $rs+rs \in (P:M)$ or $r(t(x_1+x_2)+t(x_1+x_2)) \in P$ or $s(t(x_1+x_2)+t(x_1+x_2)) \in P$.

Next, assume that $r(t(x_1+x_2)+t(x_1+x_2)) \in P$. Since $r(t+t)x_1+r(t+t)x_2 = r(t(x_1+x_2)+t(x_1+x_2)) \in P$ and $r(t+t)x_1 \notin P$, we have $r(t+t)x_2 \notin P$. Since $rs(tx_2+tx_2) = rs(t+t)x_2 \in P$ and P is α -absorbing submodule, we have

 $rs + rs \in (P:M).$

Finally, assume that $s(t(x_1+x_2)+t(x_1+x_2)) \in P$. Since $s(t+t)x_1+s(t+t)x_2=s(t(x_1+x_2)+t(x_1+x_2)) \in P$ and $s(t+t)x_2 \notin P$, we have $s(t+t)x_1 \notin P$. Since $rs(tx_1+tx_1)=rs(t+t)x_1 \in P$ and P is α -absorbing submodule, we have $rs+rs \in (P:M)$.

This complete the proof that (P:M) is an α -absorbing ideal of R.

4. Weakly α -absorbing submodules

A. Darani and F. Soheilina [1] have introduced and studied the concept of a 2-absorbing submodule of an R-module over a commutative ring R with identity. Weakly absorbing submodules have been studied in several paper such as [1], [3] and [4]. In this section, we extend the notion of α -absorbing submodules and 2-absorbing submodules to weakly α -absorbing submodules.

Definition 20. A proper submodule P of M is a weakly α -absorbing submodule if for each $r, s \in R$ and every $m \in M$ such that $rs(m+m) \in P \setminus \{0\}$, we have $rs + rs \in (P : M)$ or $r(m+m) \in P$ or $s(m+m) \in P$.

By the definition, every α -absorbing submodule is weakly α -absorbing submodule but the converse does not hold. For example, $\{\bar{0}\}$ is weakly α -absorbing but is not α -absorbing submodule of \mathbb{Z} -module \mathbb{Z}_{16} because $2 \cdot 2 \cdot (\bar{2} + \bar{2}) = \bar{0}$ and $(2 \cdot 2 + 2 \cdot 2)\mathbb{Z}_{16} \nsubseteq \{\bar{0}\}$ and $2 \cdot (\bar{2} + \bar{2}) \neq \bar{0}$.

For an element $r \in R$ and a submodule N of M, we will denote a submodule $\{m \in M \mid rm \in N\}$ of M by N_r . Furthermore, for additive identity $0 \in M$, we denote $\{0\}_r$ by 0_r . That is $0_r = \{m \in M \mid rm = 0\}$.

Proposition 21. Let P be a submodule of M. Then the following statements are equivalent:

- (i) P is a weakly α -absorbing submodule of M.
- (ii) For each $r, s \in R$, if $rs + rs \notin (P : M)$, then $\alpha(P_{rs}) = \alpha(P_r) \cup \alpha(P_s) \cup \alpha(0_{rs})$.
- (iii) For each $r, s \in R$, if $rs + rs \notin (P : M)$, then $\alpha(P_{rs}) = \alpha(P_r)$ or $\alpha(P_{rs}) = \alpha(P_s)$ or $\alpha(P_{rs}) = \alpha(0_{rs})$.

Proof. (i) \rightarrow (ii) Assume that P is a weakly α -absorbing submodule of M. Let $r,s \in R$ be such that $rs+rs \notin (P:M)$. Let $m \in \alpha(P_{rs})$. Then $rs(m+m) \in P$. If rs(m+m) = 0, then $m \in \alpha(0_{rs})$. Assume that $rs(m+m) \neq 0$. Since P is a weakly α -absorbing submodule of M, $r(m+m) \in P$ or $s(m+m) \in P$. Hecne $m \in \alpha(P_r)$ or $m \in \alpha(P_s)$. This implies that $m \in \alpha(P_r) \cup \alpha(P_s) \cup \alpha(0_{rs})$. Conversely, let $m \in \alpha(P_r) \cup \alpha(P_s) \cup \alpha(0_{rs})$. Then $r(m+m) \in P$ or $s(m+m) \in P$ or $s(m+m) \in P$. Therefore $m \in \alpha(P_{rs})$.

 $(ii) \rightarrow (iii)$ Clear.

 $(iii) \to (i)$ Assume that (iii) holds. Let $r, s \in R$ and $m \in M$ be such that $rs(m+m) \in P \setminus \{0\}$ and $rs+rs \notin (P:M)$. Then $m \in \alpha(P_{rs})$ and $rs(m+m) \neq 0$. By assumption, $m \in \alpha(P_r)$ or $m \in \alpha(P_s)$. Then $r(m+m) \in P$ or $s(m+m) \in P$. Therefore P is a weakly α -absorbing submodule of M. \square

Proposition 22. Let P be a proper submodule of M and $0_{rs} \subseteq P$ for all $r, s \in R$ with $rs \notin \alpha((P : M))$. Then P is a weakly α -absorbing submodule of M if and only if P is an α -absorbing submodule of M.

Proof. Firstly, it is clear that every α -absorbing submodule is weakly α -absorbing submodule. Conversely, assume that P is a weakly α -absorbing submodule of M. Let $r,s \in R$ and $m \in M$ be such that $rs(m+m) \in P$ and $rs+rs \notin (P:M)$. Then $m \in \alpha(P_{rs})$. By Proposition 21, we have $m \in \alpha(P_r) \cup \alpha(P_s) \cup \alpha(0_{rs})$. Then $r(m+m) \in P$ or $s(m+m) \in P$ or rs(m+m) = 0. If rs(m+m) = 0, then $m+m \in 0_{rs} \subseteq P$. So $m+m \in P$. This means $r(m+m) \in P$ or $s(m+m) \in P$. Therefore P is an α -absorbing submodule of M.

Let R_1 and R_2 be commutative rings with identity, M_i be a unital R_i -module where i=1,2. Then $M_1 \times M_2$ is an $(R_1 \times R_2)$ -module under the operation $(r_1,r_2)(m_1,m_1)=(r_1m_1,r_2m_2)$ for all $(r_1,r_2)\in R_1\times R_2$ and $(m_1,m_2)\in M_1\times M_2$.

Proposition 23. Let $R = R_1 \times R_2$ and $M = M_1 \times M_2$ and let N_1 be an R_1 -submodule of M_1 . Consider the following statements:

- (i) N_1 is an α -absorbing submodule of M_1 .
- (ii) $N_1 \times M_2$ is an α -absorbing submodule of $M_1 \times M_2$.
- (iii) $N_1 \times M_2$ is a weakly α -absorbing submodule of $M_1 \times M_2$.

Then $(i) \to (ii) \to (iii)$. Moreover, if $\beta(M_2) \neq \{0\}$, then (i), (ii) and (iii) are equivalent.

Proof. The proof of $(i) \to (ii)$ and $(ii) \to (iii)$ are straightforward. Next, assume that $\beta(M_2) \neq \{0\}$ and $N_1 \times M_2$ is a weakly α -absorbing submodule of $M_1 \times M_2$. Let $w \in M_2$ be such that $w + w \neq 0$. To show that N_1 is an α -absorbing submodule of M_1 , let $r, s \in R$ and $m \in M$ be such that $rs(m + m) \in N_1$. Note that (r,1)(s,1)[(m,w) + (m,w)] = (rs,1)(m+m,w+w) = (rs(m+m),w+w). Hence $(r,1)(s,1)[(m,w) + (m,w)] \in (N_1 \times M_2) \setminus \{(0,0)\}$. Since $N_1 \times M_2$ is a weakly α -absorbing submodule of $M_1 \times M_2$, $(rs+rs,1+1) \in (N_1 \times M_2 : M_1 \times M_2)$ or $(r,1)(m+m,w+w) \in N_1 \times M_2$ or $(s,1)(m+m,w+w) \in N_1 \times M_2$. These imply that $rs+rs \in (N_1 : M_1)$ or $r(m+m) \in N_1$ or $s(m+m) \in N_1$. Therefore N_1 is an α -absorbing submodule of M_1 .

The following example shows that if $\beta(M_2) = \{0\}$, then the part $(iii) \rightarrow (i)$ of Proposition 23 may be not hold.

Example 24. Let $M_1 = \mathbb{Z}_{16}$, $M_2 = \mathbb{Z}_2$, $R_1 = R_2 = \mathbb{Z}$. We see that $\beta(M_2) = \{\bar{0}\}.$

It is clear that $\{\bar{0}\} \times \mathbb{Z}_2$ is a weakly α -absorbing submodule of $\mathbb{Z}_{16} \times \mathbb{Z}_2$. However, $\{\bar{0}\}$ is not an α -absorbing submodule of \mathbb{Z} -module \mathbb{Z}_{16} .

Proposition 25. If P is a weakly α -absorbing submodule of an R-module M and $(P:M)^2\beta(P) \neq 0$, then P is an α -absorbing submodule of M.

Proof. Assume that P is a weakly α -absorbing submodule of an R-module M and $(P:M)^2\beta(P)\neq 0$. Let $r,s\in R$ and $m\in M$ be such that $rs(m+m)\in P$. If $rs(m+m)\neq 0$, then $rs+rs\in (P:M)$ or $r(m+m)\in P$ or $s(m+m)\in P$. Assume that rs(m+m)=0. We divide to two cases.

Case 1. $rs\beta(P) \neq 0$.

Let $x \in P$ be such that $rs(x+x) \neq 0$. Then $rs(m+m+x+x) = rs(x+x) \neq 0$. Since P is a weakly α -absorbing submodule of M, $rs+rs \in (P:M)$ or $r(m+m+x+x) \in P$ or $s(m+m+x+x) \in P$. Since $x \in P$, $rs+rs \in (P:M)$ or $r(m+m) \in P$ or $s(m+m) \in P$.

Case 2. $rs\beta(P) = 0$.

Subcase 2.1. $s(P:M)(m+m) \neq 0$.

Let $t \in (P:M)$ be such that $st(m+m) \neq 0$. Then $s(r+t)(m+m) = (sr+st)(m+m) = st(m+m) \neq 0$. Since P is a weakly α -absorbing submodule

of M, $s(r+t) + s(r+t) \in (P:M)$ or $s(m+m) \in P$ or $(r+t)(m+m) \in P$. Since $t \in (P:M)$, $rs + rs \in (P:M)$ or $r(m+m) \in P$ or $s(m+m) \in P$.

Subcase 2.2. s(P:M)(m+m) = 0.

Since $(P:M)^2\beta(P)\neq 0$, $kf(n+n)\neq 0$ where $k,f\in (P:M)$ and $n\in P$.

Note that we need to show if $sf(n+n) \neq 0$ or $kr(m+m) \neq 0$ or $rf(m+m) \neq 0$, then $rs + rs \in (P : M)$ or $r(m+m) \in P$ or $s(m+m) \in P$.

Subsubcase 2.2.1. $sf(n+n) \neq 0$.

Then $s(r+f)(n+n+m+m) = (sr+sf)(n+n+m+m) = sr(n+n)+sr(m+m)+sf(n+n)+sf(m+m) = sf(n+n) \neq 0$. Since P is a weakly α -absorbing submodule of M, $s(r+f)+s(r+f) \in (P:M)$ or $s(n+n+m+m) \in P$ or $(r+f)(n+n+m+m) \in P$. Since $f \in (P:M)$ and $n \in P$, $rs+rs \in (P:M)$ or $r(m+m) \in P$ or $s(m+m) \in P$.

Subsubcase 2.2.2. $kr(m+m) \neq 0$.

Then $r(k+s)(m+m) = (rk+rs)(m+m) = rk(m+m) \neq 0$. Since P is a weakly α -absorbing submodule of M, $r(k+s) + r(k+s) \in (P:M)$ or $r(m+m) \in P$ or $(k+s)(m+m) \in P$. Since $k \in (P:M)$, we have $rs + rs \in (P:M)$ or $r(m+m) \in P$ or $s(m+m) \in P$.

Subsubcase 2.2.3. $rf(m+m) \neq 0$.

Then $r(f+s)(m+m) = (rf+rs)(m+m) = rf(m+m) + rs(m+m) = rf(m+m) \neq 0$. Since P is a weakly α -absorbing submodule of M, $r(f+s) + r(f+s) \in (P:M)$ or $r(m+m) \in P$ or $(f+s)(m+m) \in P$. Since $f \in (P:M)$, we have $rs + rs \in (P:M)$ or $r(m+m) \in P$ or $s(m+m) \in P$.

Now, we assume that sf(n+n) = 0 and kr(m+m) = 0 and rf(m+m) = 0.

Again, we need to claim that if $kr(n+n) \neq 0$ or $kf(m+m) \neq 0$, then $rs + rs \in (P:M)$ or $r(m+m) \in P$ or $s(m+m) \in P$.

Subsubcase 2.2.4. $kr(n+n) \neq 0$.

Then $r(k+s)(n+n+m+m)=rk(n+n)+rk(m+m)+rs(n+n)+rs(m+m)=rk(n+n)\neq 0$. Since P is a weakly α -absorbing submodule of M, $r(k+s)+r(k+s)\in (P:M)$ or $r(n+n+m+m)\in P$ or $(k+s)(n+n+m+m)\in P$. Since $k\in (P:M)$ and $n\in P$, $rs+rs\in (P:M)$ or $r(m+m)\in P$ or $s(m+m)\in P$.

Subsubcase 2.2.5. $kf(m+m) \neq 0$.

Then $(k+r)(f+s)(m+m)=kf(m+m)+ks(m+m)+rf(m+m)+rs(m+m)=kf(m+m)\neq 0$. Since P is a weakly α -absorbing submodule of M, $(k+r)(f+s)+(k+r)(f+s)\in (P:M)$ or $(k+r)(m+m)\in P$ or $(f+s)(m+m)\in P$. Since $k,f\in (P:M), rs+rs\in (P:M)$ or $r(m+m)\in P$ or $s(m+m)\in P$.

Here, we assume that kr(n+n)=0 and kf(m+m)=0.

Then (s+k)(r+f)(m+m+n+n) = sr(m+m) + sr(n+n) + sf(m+m) + sf(n+m)

n) + kr(m+m) + kr(n+n) + kf(m+m) + kf(n+n) = $kf(n+n) \neq 0$. Since P is a weakly α -absorbing submodule of M, $(s+k)(r+f)+(s+k)(r+f)\in (P:M)$ or $(s+k)(m+m+n+n) \in P$ or $(r+f)(m+m+n+n) \in P$. Since $f, k \in (P:M)$ and $n \in P$, $rs + rs \in (P : M)$ or $r(m + m) \in P$ or $s(m + m) \in P$. П

Therefore P is an α -absorbing submodule of M.

Acknowledgments

This work is supported by King Mongkut's Institute of Technology Ladkrabang.

References

- [1] A. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai Journal of Mathematics, 9 (2011), 577–584.
- [2] T. Khumprapussorn, On α -prime and weakly α -prime submodules, European J. of Pure and Applied Mathematics, 11 (2018), 730–739.
- [3] S. Moradi and A. Azizi, 2-absorbing and n-weakly prime submodules, Miskolc Mathematical Notes, 13 (2012), 75–86.
- [4] S. Moradi and A. Azizi, Weakly 2-absorbing submodules of modules, Turkish J. of Mathematics, 40 (2016), 350–360.
- [5] Sh. Payrovi and S. Babaei, On the 2-absorbing submodules, Iranian J. of Mathematical Sciences and Informatics, 10 (2015), 131–137.