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Abstract: In this paper, the residual power series method is developed to
solve a class of coupled partial differential equations. This approach improves
solutions by reducing the residual error functions to create a rapidly convergent
series. The description of the proposed method is presented to approximate
the solution by highlighting all the steps necessary to implement the algorithm.
Meanwhile, the scheme is tested on several cases of examples arising in the
field of finance. Numerical results obtained justify that the proposed method
is effective, accurate and simple in application.
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1. Introduction

Mathematical models that use partial differential equations (PDEs) as the ba-
sis have become an integral part of research in most branches of science and
engineering, and have recently also been expanded in economics and finance.
PDE-based approaches are currently fairly standard as a pricing model in fi-
nance. In most cases, a model is described by coupled PDEs.
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In this paper we concentrate on coupled PDEs, which arise in the pricing
theory. In the last 50 years, various models were proposed for price options.
One of the most significant model in option pricing is the Black-Scholes model
[6], which involves a partial differential equation of parabolic type, so-called
the Black-Scholes equation. The equation estimates the price of the option
over time. However, this classical model do not reflect the true behavior of
stock movements in the real world. A new regime-switching model was intro-
duced,(see, for example [7]). This is due to the market may switch from time
to time among a finite number of states ”regimes”. In practice , the changing
between regimes is caused by different reasons, including shifts in economic poli-
cies, technological shifts, and so on. Obviously, the regime-switching model can
better fit a market dynamics. This leads to incorporating of regime coupling
terms in the system of PDEs describing the model.

We consider the American option pricing problem under regime switching.
For a detailed description of the model, we refer to [8, 15]. We just notice that
the equations used in this model have the following form:

∂Vi

∂τ
+

1

2
σ2
i S

2 ∂
2Vi

∂S2
+ riS

∂Vi

∂S
− riVi +

∑

j 6=i

qij(Vj − Vi) = 0, (1)

where S is the asset price, τ is the time, V (S, τ) is the value of an American
put option price in each regime i, i = 1, 2, · · · , n, with striking price K. Here,
let σi , ri and qij be real constants in each regime.

Since there is no exact solution, various numerical and approximation meth-
ods have been employed including Fast Fourier Transform method [19, 24], finite
difference method [10], method of lines [8, 14], penalty method [11], etc. In this
work, we concentrate on coupled PDEs that arise in financial models using the
residual power series method.

The residual power series method (RPSM) is based on the Taylor series
expansion and the concept of a residual error function. It is efficient and conve-
nient to use since it does not require discretization or linearization. The RPSM
was first developed for solving first-order fuzzy differential equations. Later, it
has been successfully applied to find numerical solutions for other equations,
including ordinary and partial differential equations, nonlinear systems of sin-
gular initial value problems, pantograph delay differential equation, fractional
differential equations, fuzzy fractional differential models [1, 2, 3, 4, 5, 12, 13,
16, 17, 18, 20, 21, 22].

The rest of paper is organized as follows. Section 2 describes the basic
concepts of the residual power series method. Application of this method for
solving coupled system of PDEs is presented in Section 3.Numerical examples
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and analysis of the results are discussed in Section 4. Finally, conclusions are
given in Section 5.

2. Fitted residual power series method

In this section, we give a brief description of RPSM and extend of this technique
for treating the system of coupled partial differential equations.

Consider the generalized system of coupled PDEs of the form:

∂Vi

∂t
+ LVi + Fi(V1, V2, · · · , Vn) = 0, (2)

subject to the initial conditions

Vi(x, t0) = V 0
i (x) , i = 1, 2, · · · , n, (3)

where Vi(x, t), i = 1, 2, · · · , n, are unknown analytic functions on the given
domain D ⊂ R

2, (x, t) ∈ D. Fi are assumed to be analytic functions on D and
they denote a coupling term.

Let L := 1
2σ

2
i x

2 ∂2

∂x2 + r1x
∂
∂x

− r1 be a partial differential operator.

According to RPSM [16-18], we assume that the solution of equations (2)
and (3) has the following form of the power series:

Vi(x, t) =
∞
∑

k=0

ai,k(x)(t− t0)
k , i = 1, 2, · · · , n. (4)

The solution can be approximated by the mth-truncated series.

V m
i (x, t) =

m
∑

k=0

ai,k(x)(t− t0)
k , i = 1, 2, · · · , n. (5)

By choosing the initial conditions (3), the initial guess of the approximation
of system (2) and (3) can be given as

ai,0(x) = V 0
i (x). (6)

Define the mth residual function as follows

Resmi (x, t) =
∂V m

i

∂t
+ LV m

i + Fi (V
m
1 , V m

2 , · · · , V m
n ) , (7)
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and the residual function as

Resi(x, t) = lim
m→∞

Resmi (x, t). (8)

Obviously, the residual function is infinite many times differentiable at t =
t0 and Resi(x, t) vanishes as m approaches the infinity. In addition, we have

∂m−1

∂tm−1
Resi(x, t0) =

∂m−1

∂tm−1
Resmi (x, t0) = 0 i = 1, 2, · · · , n. (9)

Therefore, the value of coefficients ai,k(x) , i = 1, 2, · · · , n, can be deter-
mined consecutively by solving the relation (3) with respect to ai,k(x) , i =
1, 2, · · · , n at t = t0. Furthermore, higher accuracy can be achieved by calcu-
lating more terms of the solution.

The next theorem, as a matter of fact, shows convergence of the RPSM to
understand the behavior of the solution.

Theorem 2.1. Assume that Vi(x, t), i = 1, 2, · · · , n, are the exact solu-
tions for the system (2) and (3). Then, the approximate solutions obtained by
RPSM are in fact the Taylor expansion of Vi(x, t) about t = t0.

Proof. Suppose that the approximate solutions have the form

Ṽi(x, t) = ai,0(x) + ai,1(x)(t− t0) + ai,2(x)(t− t0)
2 + · · · (10)

where i = 1, 2, · · · , n.
Thus, it suffices to show that ai,m(x) = 1

m!
∂mVi(x,t0)

∂tm
, for eachm = 0, 1, 2, · · · , n,

where Vi(x, t) are the exact solutions for (2) and (3).
For m = 0, it follows from the initial conditions that

ai,0(x) = V (x, t0) = V 0
i (x) , i = 1, · · · , n. (11)

So,
Ṽi(x, t) = V 0

i (x) + ai,1(x)(t− t0) + · · · (12)

To find ai,1(x) (m = 1), we substitute t = t0 into (2) to obtain

∂Vi(x, t0)

∂t
+ [LVi + Fi] (x, t0) = 0. (13)

On the other hand, we substitute (12) into (2) and set t = t0 as follows

ai,1(x) + [LVi + Fi] (x, t0) = 0. (14)
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Hence, by comparison, it follows that

ai,1(x) =
∂Vi(x, t0)

∂t
, i = 1, 2, · · · , n. (15)

Consequently, we have

Ṽi = V 0
i (x) +

∂Vi(x, t0)

∂t
(t− t0) + ai,2(x)(t− t0)

2 + · · · (16)

For m = 2, differentiate both sides of Equation (2) with respect to t to
obtain that

∂2Vi(x, t)

∂t2
+

∂

∂t
[LVi + Fi] (x, t) = 0 , i = 1, 2, · · · , n. (17)

If t = t0, we have

∂2Vi(x, t0)

∂t2
+

∂

∂t
[LVi + Fi] (x, t0) = 0 , 1 = 1, 2, · · · , n. (18)

Next, we substitute (16) into (17) for t = t0, we obtain

2ai,2(x) +
∂

∂t
[LVi + Fi] (x, t0) = 0 , 1 = 1, 2, · · · , n. (19)

Again, by comparison (18) and (19), we conclude that

ai,2(x) =
1

2

∂2Vi(x, t0)

∂t2
. (20)

If we continue these calculations for m = 3, 4, · · · , it can easily show that

ai,m(x) =
1

m!

∂mVi(x, t0)

∂tm
, i = 1, 2, · · · , n. (21)

This completes the proof.

3. Applications

In this section, we present application of the proposed scheme -RPSM- for
solving the system of coupled PDEs of the form

∂V1

∂t
−

1

2
σ2
1x

2∂
2V1

∂x2
− r1x

∂V1

∂x
+ r1V1 + q1(V1 − V2) = 0, (22)
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∂V2

∂t
−

1

2
σ2
2x

2∂
2V2

∂x2
− r2x

∂V2

∂x
+ r2V2 + q2(V2 − V1) = 0,

subject to the initial conditions

Vi(x, 0) = f0(x) , i = 1, 2. (23)

This problem is a special case of the American option pricing problem under
regime switching (1). We assume that, there are only two regimes (i = 1, 2) and
introduce a time-reverse transformation t = T − τ . Also, for convenience, we
rename the variable S to x. In general, the American put option price Vi(x, t)
in each regime i satisfies the free-boundary value problem. For computational
purposes, Equation (22) is posed on the localized domain D = [0, Smax]× [0, T ],
where Smax denotes a sufficiently large number to ensure the accuracy of the
solution. The maturity T and the strike K are real constants.

The mth-truncated series solutions have the following form:

V m
1 (x, t) =

m
∑

k=0

ak(x)t
k, (24)

V m
2 (x, t) =

m
∑

k=0

bk(x)t
k.

We start with selecting the initial guesses of the approximations as

a0(x) = f0(x) and b0(x) = f0(x). (25)

To find a1(x) and b1(x), we construct the residual functions

Res1V1
(x, t) = ∂

∂t
(f0(x) + a1(x)t)−

1
2σ

2
1x

2 ∂2

∂x2 (f0(x) + a1(x)t)

−r1x
∂
∂x
(f0(x) + a1(x)t) + r1(f0(x) + a1(x)t)

+q1(f0(x) + a1(x)t− f0(x)− b1(x)t),

and

Res1V2
(x, t) = ∂

∂t
(f0(x) + b1(x)t)−

1
2σ

2
2x

2 ∂2

∂x2 (f0(x) + b1(x)t)

−r1x
∂
∂x
(f0(x) + b1(x)t) + r2(f0(x) + b1(x)t)

+q2(f0(x) + b1(x)t− f0(x)− a1(x)t).
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Using the fact that Res1V1
(x, 0) = Res1V2

(x, 0) = 0, we obtain

a1(x) =
1

2
σ2
1x

2f ′′
0 + r1xf

′
0 − r1f0, (26)

b1(x) =
1

2
σ2
2x

2f ′′
0 + r2xf

′
0 − r2f0.

Similarly, for m = 2, coefficients a2(x) and b2(x) can be found from the
following equations ∂

∂t
Res2V1

(x, 0) = 0 and ∂
∂t
Res2V2

(x, 0) = 0. That is,

a2(x) =
1

2

[

1

2
σ2
1x

2a′′1(x) + r1xa
′
1(x)− a1(x)r1 − q1(a1(x)− b1(x))

]

, (27)

b2(x) =
1

2

[

1

2
σ2
2x

2b′′1(x) + r2xb
′
1(x)− b1(x)r2 − q2(b1(x)− a1(x))

]

.

Thus, by applying RPSM, we can get a general form for ak(x) and bk(x) as

ak(x) =
1

k

[

1

2
σ
2

1x
2
a
′′

k−1(x) + r1xa
′

k−1(x)− r1ak−1(x)− q1(ak−1(x)− bk−1(x))

]

(28)

bk(x) =
1

k

[

1

2
σ
2

2x
2
b
′′

k−1(x) + r2xb
′

k−1(x)− r2bk−1(x)− q2(bk−1(x)− ak−1(x))

]

4. Numerical investigation

In this section we test the proposed scheme on some examples to investigate the
efficiency and accuracy of the RPS method. We consider the system of coupled
partial differential equations (22) with different parameters and regimes.

All computations were carry out by using of Mathematica 10 software pack-
age. Initially we price an American put option with the maturity T = 1 and
the strike K = 9.

Example 4.1. Consider the two regime model that have no jumps between
different regime, that is, qi = 0, (i = 1, 2). Accordingly, we have two different
and independent models.

∂V1

∂t
−

1

2
σ2
1x

2∂
2V1

∂x2
− r1x

∂V1

∂x
+ r1V1 = 0, (29)

∂V2

∂t
−

1

2
σ2
2x

2∂
2V2

∂x2
− r2x

∂V2

∂x
+ r2V2 = 0,
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subject to the initial conditions

V1(x, 0) = V2(x, 0) = 9− x , i = 1, 2, (30)

where the parameters in the two regimes are r1 = 0.1, σ1 = 0.8 and r2 = 0.05,
σ2 = 0.3. For numerical simulation, Table 1 and Table 2 show the approximate
solution V1(x, t) and V2(x, t), respectively, of Example 4.1 compared with Runge
Kutta method (RKM) containing the absolute error and relative error at x = 0.5
and some selected grid points t with step size 0.1. To show the geometric
behaviors of the RPS approximation of Example 4.1, the 3-dimensional surface
plots of V1(x, t) and V2(x, t) are illustrated in Figure 1 and Figure 2, respectively,
for (x, t) ∈ [0, 1] × [0, 1] in comparing with RKM.

Table 1: Numerical results of V1 in Example 4.1.

t RKM RPS Absolute Error Relative Error

0.0 8.50000 8.50000 0.00 0.00
0.1 8.41045 8.41045 2.38937×10−7 2.84096×10−8

0.2 8.32179 8.32179 9.71724×10−7 1.16769×10−7

0.3 8.23401 8.23401 1.68492×10−6 2.04630×10−7

0.4 8.14710 8.14710 2.29910×10−6 2.82198×10−7

0.5 8.06106 8.06106 2.90932×10−6 3.60910×10−7

0.6 7.97588 7.97588 3.51328×10−6 4.40488×10−7

0.7 7.89154 7.89154 4.10882×10−6 5.20661×10−7

0.8 7.80804 7.80804 4.69395×10−6 6.01169×10−7

0.9 7.72538 7.72538 5.16808×10−6 6.68974×10−7

1.0 7.64353 7.64354 5.51963×10−6 7.22131×10−7

Example 4.2. Consider a special case with two identical regimes so that
r1 = r2 = 0.1 and σ1 = σ2 = 0.8, but q1 = 6 and q2 = 9.

The initial conditions are the same as in Example 4.1.
In this case, there is jump between two regimes, but they are actually

the same regime. Thereby, the prices in both regimes will be the same. For
numerical simulation, Table 3 shows the approximate solutions V1(x, t) and
V2(x, t) of Example 4.2 for x = 6 and some selected grid points t with step size
0.1. These results demonstrate the correctness of the proposed techniques.

Example 4.3. Now, we consider the problem with two different regimes.
The parameters in two regimes are r1 = 0.1 , σ1 = 0.8 , q1 = 6 and r2 = 0.05,
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Table 2: Numerical results of V2 in Example 4.1.

t RKM RPS Absolute Error Relative Error

0.0 8.50000 8.50000 0.00 0.00
0.1 8.45511 8.45511 3.00327×10−8 3.55202×10−9

0.2 8.41045 8.41045 1.22700×10−7 1.45890×10−8

0.3 8.36601 8.36601 2.13805×10−7 2.55563×10−8

0.4 8.32179 8.32179 2.93187×10−7 3.52312×10−8

0.5 8.27779 8.27779 3.72816×10−7 4.50381×10−8

0.6 8.23401 8.23401 4.52359×10−7 5.49379×10−8

0.7 8.19045 8.19045 5.31490×10−7 6.48914×10−8

0.8 8.14710 8.14710 6.09888×10−7 7.48595×10−8

0.9 8.10398 8.10398 6.74305×10−7 8.32067×10−8

1.0 8.06106 8.06106 7.22957×10−7 8.96850×10−8

Table 3: Numerical results of V1 and V2 in Example 4.2.

t Appr. sol. V1 Appro. sol. V2

0 2.80364 2.80364
0.1 2.88548 2.88548
0.2 2.96815 2.96815
0.3 3.05164 3.05164
0.4 3.13598 3.13598
0.5 3.22116 3.22116
0.6 3.30720 3.30720
0.7 3.39410 3.39410
0.8 3.48188 3.48188
0.9 3.57054 3.57054
1 3.6601 3.6601

σ2 = 0.3 , q2 = 9. For numerical simulation, Table 4 and Table 5 show the
approximate solution V1(x, t) and V2(x, t), respectively, of Example 4.3 for x = 6
and some selected grid points t with step size 0.1. Calculations are performed
for T − t. Also, the absolute error is calculated. In our problem the exact
solution is unknown. In this case, the absolute error is defined as follows:

AE(Vi(x, t)) =
∣

∣

∣
V k+1
i (x, t)− V k

i (x, t)
∣

∣

∣
,

or, by direct substitution into Equation (22).
The surface plots of the option prices are presented in Fig. 3 and Fig .4 as
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(a) (b)

Figure 1: Surface plot of the RPS approximation of V1 for Example
4.1 with x ∈ [0, 1] and t ∈ [0, 1]: (a) RKM (b) RPS.

(a) (b)

Figure 2: Surface plot of the RPS approximation of V2 for Example
4.1 with x ∈ [0, 1] and t ∈ [0, 1]: (a) RKM (b) RPS.

function of x and t. Both figures produce smooth surfaces. This confirms the
reliability of the method.

5. Conclusion and remarks

In this paper, the residual power series method has been proposed and applied
successfully for solving a class of coupled systems of PDEs arising in the option
pricing problem with regime switching. The analytic solutions in a form of
convergent series are obtained. Models with different parameters and regimes
have been used to test the validity and reliability of the present technique.
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Table 4: Numerical results of V1 in Example 4.3

t Appr. sol. V1 Abs. error

0 7.30809 0.00154695
0.1 5.94422 0.000491357
0.2 4.97776 0.000136545
0.3 4.30554 0.0000320468
0.4 3.85126 6.0335 × 10−6

0.5 3.55858 8.4181 × 10−7

0.6 3.38591 7.6307 × 10−8

0.7 3.30261 3.52307 × 10−9

0.8 3.28608 4.85691 × 10−11

0.9 3.31967 4.08562 × 10−14

1 3.39114 8.88178 × 10−16

Table 5: Numerical results of V2 in Example 4.3

t Appr. sol. V2 Abs. error

0 10.1517 0.00262781
0.1 7.99648 0.000844615
0.2 6.44544 0.000238202
0.3 5.34136 0.0000569705
0.4 4.56791 0.0000109977
0.5 4.03917 1.58865 × 10−6

0.6 3.69173 1.51612 × 10−7

0.7 3.47883 7.61452 × 10−9

0.8 3.36602 1.23492 × 10−10

0.9 3.32788 1.58096 × 10−12

1 3.34571 1.77636 × 10−15

Therefore, it can be concluded that the RPS method is effective, accurate and
simple in application.
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