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1. Introduction

A contraction is one of the main tools to prove the existence and uniqueness
results on fixed point theory. So in 1972, Sehgal and Baharucha-Reid (see [17])
generalized the Banach Contraction Principle [1] to a complete Menger space
(see [15] and [16]), which is a milestone in developing fixed point theorems in
such space. They proved their result for mapping f such that for some constant
0 < a < 1, the probability that the distance between image points fz and fy
is less than at is at least as large as the probability that the distance between

Received: March 15, 2020 (© 2020 Academic Publications

§Correspondence author



622 A. Mbarki, R. Oubrahim

x and y is less than t. The contraction proved by Sehgal and Bharucha-Reid
is known as Sehgal’s contraction or B-contraction. The problem of obtaining
fixed point theorems for probabilistic ¢-contraction in Menger spaces has been
studied by different authors (for example see [3]). In the former approaches
to this topic the authors used conditions too much restrictive on the gauge
function ¢ [2]. For example, Mbarki et al. proved a fixed point theorem for
¢-contraction mapping in general probabilistic metric spaces (see [5], [8] and
[9]). Later, Jachymski in [7] obtained a fixed point theorem for Menger spaces
weakening the conditions on ¢ which improved the applicability of these types
of theorems.

To extend the notion of probabilistic metric, Mbarki et al. [11] in 2017
proposed a new notion called probabilistic b-metric by generalizing the (prob-
abilistic) triangle inequality axiom in the definition of standard probabilistic
metric. They discussed some topological and geometrical properties of prob-
abilistic b-metric spaces and they showed the fixed point and common fixed
point property for a self mapping which is a nonlinear contractions in b-Menger
spaces which are a particular spaces of probabilistic b-metric spaces (see [14]).
Furthermore, they defined the notion of fully convex structure and established
in fully convex b-Menger spaces the existence of common fixed point for nonex-
pansive mapping by using the normal structure property (see [12]). Also, they
showed a fixed point theorem in b-Menger spaces using B-contraction with
cyclical conditions (see [13]).

Furthermore, there exist in convex spaces the cases where the involved
function is not necessarily a self mapping of a closed subset, then the condition
f(0C) C C plays a crucial role to guarantee the existence of fixed point for non
self-mapping f : C — X, where 0C' is boundary of set C.

In this present paper, we establish the existence and uniquenness of fixed
point in b-Menger spaces for non-self mappings with nonlinear contractive con-
ditions using the fully convex structure. An example will be given to support
our results.

2. Preliminaries

We now recall some basic definitions and relevant lemmas in the theory of
b-Menger spaces (see [11] and [12]).

A distance distribution function (briefly, a d.d.f.) is a nondecreasing func-
tion f defined on RT U {oo} that satisfies f(0) = 0 and f(oo) = 1, and is left
continuous on (0, oo). The set of all d.d.f’s will be denoted by AT and the set
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of all fin AT for which lim f(¢t) =1 by DT.
t—00

A simple example of distribution function is the Heaviside function in DT

0 if t<0,
H(t)_{l if ¢t>0.

A commutative, associative and nondecreasing mapping 7" : [0, 1] x[0, 1] —
[0, 1] is called a t-norm if and only if T'(a, 1) = a for all a € [0, 1]. Tas(a, b) =
Min(a, b) is a typical example of continuous t-norm.

Definition 1. ([11]) A b-Menger space is a quadruple (M, F, T, s) where
M is a nonempty set, I is a function from M x M into AT, T is a t-norm,
s > 1 is a real number, and the following conditions are satisfied:

For all a, b, ce M and z, y > 0,

1. Fpy=H & a=b,
2. Fab:Fbm

3. Fup(s(xz+vy)) > T(Fae(x), Fp(y))  (triangular inequality).
It should be clear that a Menger space is a b-Menger with s = 1.

Definition 2. Let (M, F') be a probabilistic semimetric space (just (1)
and (2) of Definition 1 are satisfied). For a in M and ¢ > 0, the strong t-
neighborhood of a is the set No(t) = {b € M : Fu(t) > 1 —t}. The strong
neighborhood system at a is the collection p, = {N,(t) : ¢t > 0} and the strong
neighborhood system for M is the union p = (J,cps ©a-

If (M, F, T, s) is a b-Menger space with 7" is continuous, then the family
& consisting of () and all unions of elements of this strong neighborhood system
for M determines a topology <& for M. Moreover, Mbarki et al. [11] showed
that (M, F, T, s) endowed with the topology < is a Hausdorff space and the
function F' is in general not continuous.

In b-Menger space, the convergence of sequence is defined as follows.

Definition 3. Let {x,} be a sequence in a b-Menger space (M, F, T, s).

1. A sequence {z,} is convergent to x € M, if for every € > 0, there exists
a positive integer N such that F}, ,(€) > 1 — e whenever n > N.
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2. A sequence {z,} is called a Cauchy sequence, if for every ¢ > 0 there
exists a positive integer N such that n, m > N = F, , (e) >1—€.

3. (M, F, T, s) is complete if every Cauchy sequence has a limit.

In what follows, we will be conserned by a b-Menger space (M, F, T, s)
such that T is a continuous t-norm and RanF C DT. R. Egbert [4], in 1968,
introduced a probabilistic generalization of the notion of diameter of nonempty
set in metric space.

Definition 4. ([12]) Let (M, F, T, s) be a b-Menger space and A C M.
The probabilistic diameter of set A is given by D4 (t) = sup,;inf, pea Fap(€)
and the diameter of the set A is defined by D4 = sup;~qsup,;inf, pea Fup(e).
If D4 =1 the set A will be called probabilistically bounded.

Lemma 2.1. ([16]) For any a, b€ A, Fy, > Dg and Dy = D.

Using the definition of sup A and inf A we have the following lemma.

Lemma 2.2. ([12]) Let (M, F, T, s) be a b-Menger space and A C M. A
is probabilistically bounded if and only if for each \ € (0,1) there exists t > 0

such that Fu(t) > 1 —t for all a, b € A.

Let us recall the definition of the fully convex structure in b-Menger spaces
introduced in [12].

Definition 5. ([12]) A convex b-Menger space (M, F, T, s) with a convex

structure W : M x M x [0, 1] — M will be called fully convex if, for arbitrary
a, b€ M, a # b there exists A € (0, 1) such that W(a, b, \) ¢ {a, b}.

3. Main results
Definition 6. Let (M, F, T, s) be a b-Menger space and A a nonempty
subset of M. The set A is said to be disconnected if it is the union of two

disjoint nonempty open sets. Otherwise, A is said to be connected.

Definition 7. Let (M, F, T, s) be a b-Menger space and A a nonempty
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subset of M. The boundary of the set A is the intersection of the closure of A
with the closure of its complement 0A = AN (M\A).

Lemma 3.1. Let (M, F, T, s) be a b-Menger space, A and B two
nonempty subsets of M. If A is connected, AN B # ) and AN Ext(B) # 0,
then AN OB # (.

Proof. Suppose that ANOB = (), then ANB and AN Ext(B) are a partition
of open sets of A, which contradict the connectdness of the set A. O

Definition 8. Let (M, F, T, s) be a b-Menger space and {G,}nen a
nested sequence of nonempty, closed subsets of M. We say that the sequence
{Gy, }nen has probabilistic diameter zero if for each A € (0, 1) and each ¢ > 0
there exists ng € N such that Fj;(¢) > 1 — X for all a, b € Gy,.

Since the proof of Theorem 1.4 in [18] and Theorem 2.1 in [10], the triangular
inequality and the continuity of the probabilistic b-metric F' play no role, we
could claim the following results.

Lemma 3.2. Let (M, F, T, s) be a complete b-Menger space and {Gy, } nen
a nested sequence of nonempty, closed subsets of M. The sequence {G, }nen
has probabilistic diameter zero if and only if Dg, — H, for n — oo.

Lemma 3.3. Let (M, F, T, s) be a complete b-Menger space and {Gy, } neN
a nested sequence of nonempty, closed subsets of M such that Dg, — H, for
n — oo. Then there is exactly one point xg € G, for every n € N.

Now, we will prove the existence and the uniqueness of fixed point in b-
Menger space for mapping f : M — M satisfying some type of contraction
used by Fang [6] called probabilistic ¢-contraction.

Definition 9. Let (M, F') be a probabilistic semi-metric space. A map-
ping f : M — M is called a probabilistic ¢-contraction if Fy,pp(@(t)) >
Fu(t) for all t > 0 where ¢ : RT — RT is a gauge function in the set
O = {p/for each t > 0, there exists r >t such that lim, ., ¢"(r) = 0}.

Definition 10. Let {z,} be a sequence which converges to = in the b-
Menger space (M, F, T, s). The mapping F verifies the condition (C7) if for
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all t > 0, Fyy(t) > liminf F, ,(¢) for all y € M.

n—oo

Definition 11. Let (M, F, T, s) be a b-Menger space. W satisfies the
condition (Cy) if for every A € (0, 1), ¢t > 0 and a, b, ¢ € M, we have that

FW(a, b, )\)c(t) > min{Fea(t), Fop(t)}
We can easily show the following lemma.

Lemma 3.4. Let (M, F, T, s) be a b-Menger space and a, b € M such
that ImF C D%, If there exists a function ¢ € ®, such that Fu,(p(t)) > Fu(t)
for every t > 0, then a = b.

Now, we are ready to state and prove the main fixed point theorem of this
work.

Theorem 12. Let (M, F, T, s) be a fully convex complete b-Menger space
with convex structure W : M x M x [0, 1] — M satisfying the conditions (C1)
and (Cy). Let f : A — M be a non-self mapping satisfying Fiqr,(¢(t)) > Fap(t)
for all a, b € A and every t > 0, where ¢ € ® and A is a nonempty, closed and
probabilistic bounded subset of M. Suppose also that for all a, b € M, the set
{W(a, b, 0),0 € [0, 1]} is connected and f(DA) C A. Then f has a unique
fixed point in A.

Proof. Step 1: Construction of sequence.

We select a sequence {p,} in A in the following way:

Let pg € 0A, then fpg € A. Set p1 = fpo If fpp € A set po = fp1. If
fp1 € OA, set po = fp1 and we have py € A, and the last case is fp ¢ A,
set pg = W(pl,fpl,ﬁ)oe 0A, 6 € (0,1). In this case, ps is well define because
Wi(p1, fp1,1) = p1 € A, W(p1, [p1,0) = fp1 ¢ A then W(p1, fp1,0) € Ext(A)
and since {W (p1, fp1;60),0 € [0,1]} is connected and the fact that (M, F, T, s)
is fully convex, there exists 6 € (0,1) such that W(py, fpl,Hl) ¢ {p1, fp1}, by
Lemma 3.1 we have

{W(p1, fp1;6),0 € [0,1]} N DA # 0.

By induction we may obtain sequence {p,} such that

pn = fon-1if fpn—1 € Aand p, = W(pn—1, frn-1;0), 0 € (0,1) if fpn—1 ¢
A. Additionally we have if p,, = W(pp—1, fon-1;0), 0 € (0,1) then p,11 = fpn
and pp,—1 = fpp—2. We observe also that there exists a subsequence {py, }ren



PROBABILISTIC ¢-CONTRACTION IN...

such that
Pry+1 = [Pny,-
Now let
Gn = {pmpn—l—la }7

P,=G,, neN.

Observe that {P,} is nested sequence of nonempty closed sets.

Step 2: We prove that

Dp, (¢(t)) = Dp,_,(t)

holds for every ¢t > 0.
Three cases must be considered:
Case 1.
DPn+ti = Pnti—1 and pp4j = ppyj—1 for arbitrary 4,5 € N.
In this case we have

Fpn+ipn+j (So(t)) Ffpn+i71fpn+jfl(80(t))

Fpn+i—1pn+]’—1 (t)
‘DPn—Q (t) °

VARV

Case 2.

627

Pnti = Pnti—1 and ppy; = W(pnij—1, [Pnyj—1,0), 0 € (0,1) for arbitrary

1,7 € N.
In this case we have

Fpvivnt (pt) = Ffpn+i—1W(Pn+j—1,fpn+j—1,9) ((1))
> min {Ffpn+i—1pn+j—1 gp(t), Ffpnﬂ—lfpnﬂ—l(p(t)}
= min {Ffpn+i—1fpn+j—2‘p(t)7 Ffpn+i—1fpn+j—1 gp(t)}
> min {Fpn+i—1pn+j—2 () Fppri 1pnssa (t)}
> Dp, ,(t).
Case 3.

Pnti = W(Pnti-1, fPnti-1,61), 01 € (0,1)

and
Pntj = W(Pnyj—1, fPnyj—1,02), 02 € (0,1)

for arbitrary 4,7 € N.
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In this case we have

v (P) = FW(ppsiot fonsio1.00W bns i1, onss—1.02) (P(E))
min{Fp, i 1puiso1 (P(6))s Fppsiiy fpnas—1 (0(1))
’Ffpn+i—1pn+j—1( (t))vaanrz 1fPryj— H(e(®)}
min{Ffanﬂ 2fPrtj— ,(p(1)), Frp, i 2 fPntj— L ((2))
’Ffpn+i71fpn+j 2( t), Ffpn+z 1fPrti— 1( ()}
> min{Fp, . op.i;o(t), Fpupiopusji (£)

s Fpnsicapnsio2 () Fpoyisipayia (0}
> Dp,_,(t).

v

By definition of the probabilistic diameter of P, we have

Dp,(¢(t)) = sup inf F, .., . (€
(pl0)) = sup 0L Fp i ()

Since the function

€ }]IlefN Fpn+1pn+] (E)

is nondecreasing, then

sup inf F,

< (t) 1,JEN PrtiPntj (6) Z Fpn+ipn+j (So(t))
e<p ).

Then
Dp,(¢(t)) = Dp,_,(t).
Step 3:We prove that the family {P,} has probabilistic diameter zero. Let

A€ (0,1) and t > 0. Since G C A for all k£ € N then Gy, is probabilistically
bounded set. By Lemma 2.2, there exists tg > 0 such that

Fab(tO) >1- )‘7

for all a,b € G, then
inf Fp(tg) >1— A
oinf ab(to) >
Hence
D¢, (tg) = sup inf F, >1-— A
Gy (to) =sup inf Fi(e) >

Since ¢ € ® then there exists r > 1y, such that

lim ¢"(r) = 0.

n—0o0
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Thus, there exists | € N such that

From (1) we have

AV,

v

DGn72l (T)

Let ng = 21 + k and a,b € G,,,, since ¢!(r) < t. Then

Dg,, (t) Dg,, (#'(r))
DGnO—Ql (r)

De, (r)

AVAR AVAR AVAR AVAR V]

By Lemma 2.1, we get
Dp,(t) = 1=\,

for all a,b € P,, then the sequence {P, },en has probabilistic diameter zero.
By Lemma 3.2 and Lemma 3.3 we infer that there exists ¢ € A such that

ﬂPn:q.

neN

Step 4: We prove that ¢ is a fixed point of f.
Since the sequence {P, }nen has probabilistic diameter zero, then for each
A € (0,1) and each ¢t > 0 there exists ng € N such that for all n > ny we have

Fpqg>1—A\

Then
liminf £}, ; > 1 — A,

n—oo

and by the condition (C7) we get

lim p, =q.

n—oo
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Hence
im py, 11 =¢ and  lim fp,, =q.

n—oo

Since ¢ € ®, then there exists u > t, such that lim,, o ¢"(u) = 0, hence there
exists [ € N such that ¢!(u) < t. Then we have

Frp, 1qt) > Frp, pq(#'(w))

> Fpa(@' ™ (W)

Then
lim inf Fp, f4(t) > liminf F, q(gol_l(u)).

n—o0 n—oo

Since limy, o0 Pn, = ¢ and lim,_, fpn, = ¢ and by the condition (C;) we get

quq(t) 2 qu(%"l_l(u))-

Hence
Fypq(t) > 1 for every t>0.
Therefore
fa=aq,
and ¢ is a fixed point of f.
Suppose that ¢ € OA, then fq € A, hence ¢ € A a contradiction because

ANOA =0, therefore q € A.
Step 5: We prove the uniqueness of the fixed point.

Assume that there exists w € A such that fw =w. We have

Frapu(p(t) = Fou(t)
for every t > 0. So
Fauw(p(t)) = Fau(t)
for every t > 0.
By Lemma 3.4 we get ¢ = w. ]

The following example illustrates our results.

2

Example 3.1. Let f : R — R be defined by fz = %— 5 and let
¢ : RT — R be defined by

Jil E (071)7
_ 4 4
p(t) =4 —-5+73, te(l,3],
t— =L, t € (%,00).
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(R, F,Ty,2" 1) is a fully convex b-Menger space with the convex structure
W {(a,b; A) = Aa+(1—\)b satisfying the condition (C3) and since F' is continuous
then the convex structure verifies the condition (C}) (see [12]).

We take A = [—31, 1], we have f(9A) C A. Ttis clear that the set A is closed
and bounded, then A is probabilistically bounded. Also we have that the set
{W(a,b;\),\ € [0,1]} is an interval for all a,b € R then {W(a,b;\), X € [0,1]}
is a connected set.

Now we prove that f is probabilistic ¢-contraction. We have

Frapp(p(t)) = H(p(t) —[fa— fb]")
= Hp(t) ~ grla® — 2.

In other hand it is clear that ¢(t) > L, then ¢(t) > & for all n > 2 and we

-_ 277.
have since a,b € [—3,1], [a® — b?| < |a — b, then
F D) = H(p(t) — —|a® — 52"
rapp(@(t)) = H(p(t) — 57l ")
t 1
> H(Q—n - 2—n|a— b|"™)
= H(t—|a—0b[")
= Fup(t).
We have that ¢ € ®. Therefore all conditions of Theorem 12 are satisfied. Then
f has unique fixed point *S’JFT\/% € A
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