The main object of the present paper is to investigate the upper bound of the second Hankel determinant
for the analytic functions defined by Ruscheweyh derivative. Furthermore, several basic properties such as inclusion, Hadamard product are also considered.
[2] B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hypergeometric
functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[3] J.H. Choi, Y.C. Kim and T. Sugawa, A general approach to the FeketoSzeg¨o problem, J. Math. Soc. Japan, 59, No 3 (2007), 707-727.
[4] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften
259, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo,
1983.
[5] R. Ehrenborg, The Hankel determinant of exponantial polynomials, American
Mathematical Monthly, 107 (2000), 557-560.
[6] M. Elumalai, Sufficient conditions for convex functions of order
, Int. J.
Appl. Math., 31, No 4 (2018), 587-595; DOI: 10.12732/ijam.v31i4.5.
[7] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes,
Int. J. Math. Anal., 4 (2010), 2573-2585.
[8] A. Janteng, S.A. Halim and M. Darus, Coefficient inequality for a function
whose derivative has positive real part, J. Ineq. Pure and Appl. Math., 7,
No 2 (2006), 1-5.
[9] W. Koepf, On the Feketo-Szeg¨o problem for close-to-convex functions,
Proc. Amer. Math. Soc., 101 (1987), 89-95.
[10] J.W. Layman, The Hankel transform and some of its properties, J. of
Integer Sequences, 4 (2001), 1-11.
[11] R.J. Libera and E.J. Zlotkiewicz, Early coefficients of the inverse of a
regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225-230.
[12] R.J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a
function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), 251-257.
[13] T.H. MacGregor, Functions whose derivative has a positive real part,
Trans. Amer. Math. Soc. 104 (1962), 532-537.
[14] W. Ma and D. Minda, An Integral geometric characterization of strongly
starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 45
(1991), 89-97.
[15] A.K. Mishra and P. Gochhayat, Second Hankel determinant for a class of
analytic functions defined by fractional derivative, Int. J. Math. Math. Sci.
2008 (2008), 1-10.
[16] A. Mohammed and M. Darus, Second Hankel determinant for a class of
analytic functions defined by linear operator, Tamkang J. Math., 43, No 3
(2012), 455-462.
[17] J.W. Noonan and D.K. Thomas, On the second Hankel determinant of a
really mean p-valent functions, Trans. Amer. Math. Soc. 223, No 2 (1976),
337-346.
[18] K.I. Noor, Hankel determinant problem for the class of functions with
bounded boundary rotation, Rev. Roum. Math. Pures et Appl., 28, No 8
(1983), 731-739.
[19] C. Ramachandran, L. Vanitha and S. Owa, Certain bounds for unified
convex functions of q-difference operator, Int. J. Appl. Math. 29, No 2
(2016), 243-261; doi: 10.12732/ijam.v29i2.8.
[20] M. I. S. Robertson, On the theory of univalent functions, Annals of Mathematics,
37 (1936), 374-408.
[21] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49 (1975), 109-115.
[22] S. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions
and the P´olya-Schoenberg conjecture, Comment. Math. Helv., 48
(1973), 119-135.
[23] C. Selvaraj and T.R.K. Kumar, Second Hankel determinant for certain
classes of analytic functions, Int. J. Appl. Math. 28, No 1 (2015), 37-50;
doi: 10.12732/ijam.v28i1.4.
[24] H.M. Srivastava and S. Owa, Current Topics in Analytic Function Theory,
World Scientific Publishing Company, Singapore-New Jersey-LondonHong Kong, 1992.
[25] T. Yavuz, Second Hankel determinant problem for a certain subclass of
univalent functions, Int. J. Math. Anal., 9, No 10 (2015), 493-498.