SECOND HANKEL DETERMINANT FOR A CLASS
OF ANALYTIC FUNCTIONS DEFINED
BY RUSCHEWEYH DERIVATIVE

Abstract

The main object of the present paper is to investigate the upper bound of the second Hankel determinant $\vert a_{2}a_{4} - a_{3}^{2}\vert$ for the analytic functions defined by Ruscheweyh derivative. Furthermore, several basic properties such as inclusion, Hadamard product are also considered.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 4
Year: 2020

DOI: 10.12732/ijam.v33i4.6

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
  2. [2] B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
  3. [3] J.H. Choi, Y.C. Kim and T. Sugawa, A general approach to the FeketoSzeg¨o problem, J. Math. Soc. Japan, 59, No 3 (2007), 707-727.
  4. [4] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1983.
  5. [5] R. Ehrenborg, The Hankel determinant of exponantial polynomials, American Mathematical Monthly, 107 (2000), 557-560.
  6. [6] M. Elumalai, Sufficient conditions for convex functions of order , Int. J. Appl. Math., 31, No 4 (2018), 587-595; DOI: 10.12732/ijam.v31i4.5.
  7. [7] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4 (2010), 2573-2585.
  8. [8] A. Janteng, S.A. Halim and M. Darus, Coefficient inequality for a function whose derivative has positive real part, J. Ineq. Pure and Appl. Math., 7, No 2 (2006), 1-5.
  9. [9] W. Koepf, On the Feketo-Szeg¨o problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89-95.
  10. [10] J.W. Layman, The Hankel transform and some of its properties, J. of Integer Sequences, 4 (2001), 1-11.
  11. [11] R.J. Libera and E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225-230.
  12. [12] R.J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), 251-257.
  13. [13] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537.
  14. [14] W. Ma and D. Minda, An Integral geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 45 (1991), 89-97.
  15. [15] A.K. Mishra and P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci. 2008 (2008), 1-10.
  16. [16] A. Mohammed and M. Darus, Second Hankel determinant for a class of analytic functions defined by linear operator, Tamkang J. Math., 43, No 3 (2012), 455-462.
  17. [17] J.W. Noonan and D.K. Thomas, On the second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc. 223, No 2 (1976), 337-346.
  18. [18] K.I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures et Appl., 28, No 8 (1983), 731-739.
  19. [19] C. Ramachandran, L. Vanitha and S. Owa, Certain bounds for unified convex functions of q-difference operator, Int. J. Appl. Math. 29, No 2 (2016), 243-261; doi: 10.12732/ijam.v29i2.8.
  20. [20] M. I. S. Robertson, On the theory of univalent functions, Annals of Mathematics, 37 (1936), 374-408.
  21. [21] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
  22. [22] S. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the P´olya-Schoenberg conjecture, Comment. Math. Helv., 48 (1973), 119-135.
  23. [23] C. Selvaraj and T.R.K. Kumar, Second Hankel determinant for certain classes of analytic functions, Int. J. Appl. Math. 28, No 1 (2015), 37-50; doi: 10.12732/ijam.v28i1.4.
  24. [24] H.M. Srivastava and S. Owa, Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore-New Jersey-LondonHong Kong, 1992.
  25. [25] T. Yavuz, Second Hankel determinant problem for a certain subclass of univalent functions, Int. J. Math. Anal., 9, No 10 (2015), 493-498.