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Abstract: This work presents the use of a schemes in generalized finite-
differences for the calculation of a numeric solution associated to a stationary,
advection-diffusion problem, and the usage of such schemes in the study of an
inverse problem related to this one, in which a non-linear, regularized least-
squares adjustment is employed to determine certain coefficients involved in
the problem.
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1. Introduction

Advection-diffusion problems arise naturally when analyzing interactions be-
tween physical processes with its effect on species or components, or on heat.
The transport processes are relevant in almost all environmental systems, since
heat or mass transport are common phenomena which can be found practically
everywhere in the planet.

Two different types of transport processes can be distinguished: advection
and diffusion (or dispersion). Advection can be understood in a narrower sense
as a basic process of transport: a particle is purely shifted from one place to
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another by a flow field. Diffusion or dispersion processes arise when a difference
in concentration is involved. There exist a natural tendency among all systems
to equalize concentration gradients. If the species have the possibility to move
from one place to another, there will be a net diffusive or dispersive flux from
a location with high concentration to locations with lower concentrations. In
each of these transport processes which can be found in nature, conservation
principles must be present as well.

The present work was first motivated by the study made by Manju Agarwal
and Abhinav Tandon [1] on mesoscale wind, where they used a finite-difference
scheme to model a two-dimension steady state problem. In their model, these
authors used a model for mesoscale wind components used by Dilley and Yen
[3] and a large-scale wind model used by Lin and Hieldemann [6]. The purpose
of this work is to present a solution to a two-dimension, stationary advection-
diffusion problem using a generalized finite-difference scheme, then to use this
numerical solution as a benchmark to propose different and less complex models
for the mesoscale wind components. Two new models are proposed, and the
results obtained using such models were quite similar to the ones shown in [3, 6].

2. A stationary problem for benchmark

Consider the 2D stationary, advection-diffusion problem

oC oC 0 oC 0 oC
— — = A— — [ A=— 1
u8$+v8y 83:( 8:1:>+8y< 8y>’ (1)

defined over the domain 2 = [0, 1] x [0, 1], with the parameters u = v = 0.1,
A(y) = 1+e7'% and the boundary conditions C(0,%) = C(1,y) = 0.05, g—g =0
in [0,1] x {1} and g—g = g(x) in [0,1] x {0}, where

€T e
9(x) 0 otherwise.

{0.5 d<gp<d

Our first step is to propose a generalized finite-differences scheme for this
problem, which will then be used to study the inverse problem of interest.
The mesh used to compute a numerical solution consist on a regular mesh in
the domain, using 201 nodes on each direction, z and y, and then adding the
diagonal going from the upper right corner to the lower left corner on each cell,
which leads to a mesh similar as the one shown in Figure 1.
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Figure 1: Mesh used in the computation of the numerical solution
to (1), along with the boundary conditions for the problem.

In this mesh, each inner node has six neighbors, as shown in Figure 2.
The goal is to find coefficients I'g, 'y, ..., I'x such that the following consistency
condition is fulfilled. Consider the second order linear operator:

L(LP, Kl(xa y)v KQ(xvy)a K3(x7y)a K4(5E, y)v K5(x,y)) =

0 0 0 0
Ka(e,y) gy + Kol ) 55+ Kl y) 50 + Kl ) 0+ Ks(e, )

This operator evaluated at the grid point pg = (z¢,yo) leads to the combi-
nation

6
Lo =Y _Tu(po, i, K1 (o, 90), K2 (20,0,
1=1

Ks3(z0,y0), Ka(70,y0), K5(z0,%0))C(p1),
which must satisfy the consistency condition

7(po) := [L(C, K1(=,y), K2(7, ), K3(2,9),

K4(Z’,y), K5($7y))](1170,’y0) - LO — 07

as pi,...pg — Po, according to [2].
For the sake of brevity, let

Fl = Fl(p07pla Kl(xluyl)u K2($l7yl)7

K3(xl7yl)7 K4(xl7yl)7K5($l7yl))'
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Figure 2: Neighbors distribution for an inner node in the mesh (1).

Let Az; and Ay; be the z and y components of p; — pg, respectively.
Thus, the local truncation error 7(pg) (up to second order) yields

6 6 %
7(po) = (Ks(ﬂﬁoyyo) - ZE) C(po) + (K:s(l’o,yo) - ZDA%) B P0)
i=1

=0

6
+ <K4(fvo,yo) - ZFiA%> 2—5%)

=1

M-

1

(2

6
9?C
+ (- ZFiAfUz‘Ayi> m(po)

i=1

6

) )2 2
+ <K2(a:073/0) - Z Fl(Ale) ) 88;; (po)

1=

+ O (max{Az;, Ay;})>.

If the function C from (1) is C* for k > 2 !, the previous equations can be

Tt is to say, the first k derivatives exist and are continuous.
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written as a system of linear equations

1 1 ... 1 11:0 Ks5(z0,y0)

0 Al‘l - Al‘(, Fl K3(x07 yO)

0 Ay ... Ay > | Ku(zo,v0) 2)
0 (Ax1)2 o (A.Iﬁ)Q ' N 2K, (an yO) '

0  AznAy; ... AxgAyg ' 0

0 (Ay)? ... (Ayg)? 'F6 2K9(x0,Y0)

It is worth to remark that this system of linear equations is not well-
determined in general. In order to solve the system (2), the column of zeros and
the row of ones can be put aside for a moment to solve the remaining system,
and 'y can be determined by the first equation of (2)

6
Z 1307 ?/O)
i=0
Adapting this system to problem (1), the remaining system can be written as
MT = 3, (3)

according to the node distribution shown in Figure 2, from which it is clear
that A, = Ay == A:

A A 0 -A -A 0
0 A A 0 -A -A
M=| A2 A2 0 A?2 A% 0 ,
0 A? 0 0 A% 0
0 A%Z A2 0 A% A2
r
F; oa —u(zo,Y0)
' a—y(fﬁo,yo) - ’U(ﬂfo,yo)
I'= ' ; ,B = (.’EO, yO)
'F6 (x(]uyO)

The previous system was solved using the pseudo inverse matrix, which led
to the following numerical solution.
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Numerical solution

0.26

0.24

0.22

Figure 3: Numerical solution obtained for the problem (1).

3. The inverse problem

In the context of this work, by inverse problem it will be referred the following
issue: given the numerical solution obtained for problem (1) in the previous
section, suppose that such solution corresponds to an actual measurement of the
concentration of a substance suspended in the atmosphere. The inverse problem
discussed in this work is about determine some of the physical parameters
involved in this advection-diffusion problem starting from the already-known
solution; particularly, it will be about determine the parameters u and v from
(1), which corresponds to the transport velocities. For the model of these
parameters, Dilley and Yen [3] proposed the following functions, given as power

o ulw,y) = (U1 - ax) <%>m Uw)z?ﬂl(i)m

where Uy, a,y1, m are parameters to be determined, which are closely related
to the physics involved in the problem.

The purpose of this work is to propose different functions to model the
transport velocities u and v from (1), which could be used to replicate the solu-
tion already known. On the other hand, it would be desired for such functions
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A; 413.86 | Ap 41.38
By 0.03 | Ba 0.03
o 41386 | ap  0.03

Table 1: Values found for the parameters in (4).

to be less complex that the ones proposed in [3]. The fist approach proposed is
given by the following power laws:

U(.’E) = Alxal + Bla /U(y) = AQ?JOQ + B27 (4)

where the coefficients A1, Ao, B1, B, a1, s are constants to be determined. In
comparison with the models proposed in [3], each of these approaches depends
only of one space component, z and y respectively. The calculation of the
parameters was made using the data from the numerical solution obtained in
the previous section in a non-linear, regularized least-squares adjustment using
the trust-region-reflective algorithm. The values found for such parameters are
shown in Table 1.

The functions proposed in (4), along with the parameters just found, were
used to compute a numerical solution to the problem (1) using the scheme in
generalized finite-differences described in the previous section. Both numerical
solutions are compared below.

As it can be seen in Figure 4, both numerical solutions are quite similar,
which can be confirmed by the norm of the difference between these two matri-
ces. The || - ||oo-norm of this difference is 1.608 x 10719, while the || - ||a-norm
of this difference is 4.6 x 107,

The second model proposed is given as rational functions as follows:

_Alx-i-AQ _Bly—i-Bg

u(z) = m, v(y) = ma (5)

where the coefficients Ay, As, A3, A4 and By, Bo, B3, B4 are constants to be de-
termined. Just like the model (4), each of these functions depends only on
one space coordinate, x and y respectively. Here again, a non-linear, regular-
ized least-squares adjustment using the data from the solution obtained in the
previous section was used to determine the parameters required. The trust-
region-reflective algorithm was also used. The values found for each parameter
are shown below:

The numerical solution to (1) was calculated again replacing the functions
u and v with the parameters just computed, using the same finite-differences
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Numerical solution Soluqon with the proposed model

1
0.3 0.3
0.9 0.9
0.8 0.8
0.25 0.25
0.7 0.7
0.6 0.6
0.2 0.2
0.5 0:5
03 0.15 0 0.15
0.3 0.3
0.2 0.1 0.2 0.1
0.1 0.1
0 0.05 0 : 0.05
0 0.5 1 0 0.5 1

Figure 4: Comparison of both numerical solutions, using the expo-
nential model (4).

scheme described in the previous section. The comparison between both nu-
merical solutions is shown below. For comparison purposes, the norm of the

difference between these two matrices was computed again. The || - ||co-norm
of this difference is 6.57 x 107!, while the || - ||>-norm of this difference is
3.21 x 1077,

4. Conclusions

The generalized finite-difference scheme presented in section two provided a
good approximation to get a numerical solution to the problem (1), despite the
boundary conditions of the problem. Such scheme varies slightly from a scheme
in classical finite-differences, but the addition of two extra nodes to each inner
node in the grid allowed us the get a decent numerical solution. It can be seen
in Figure 3 that the effects of the ill-posedness of the problem are still present,
but such effects are due to the formulation of the problem instead of the scheme
used to compute the solution.
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Ar 0.0499 | By 0.0501
Az 0.0499 | By 0.0501
Az 0.0501 | Bz 0.0499
As 0.0501 | By 0.0499

Table 2: Values found for the parameters in (5).

Regarding section three, we would like to remark that it is possible to model

the transport velocities involved in the formulation of problem (1) in a simpler
way that the one presented in [3]. It must be recognized that the formulation
made in [3] is much more related to the physics involved in the problem, but
our claim is that a simpler approach for such parameters is also possible, which
is a quite desirable feature when computing a numerical solution.
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Figure 5: Comparison of both numerical solutions, using the rational
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