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1. Introduction

The numerically erasure-robust frames (NERF) has been used to give a precise
characterization of erasure robustness in information transmission.

Gribonval and Nielsen in [3] studied sparse representations of signals from
a general dictionary in a Banach space X, that is is a family of unit vectors
{fk}k∈K with dense span in X (K is a finite or countable index set) and gave
sufficient conditions for having a unique sparse representation of a signal from
the dictionary with respect to a large class of admissible sparseness measures.
In [1], Fickus and many others used ideas from the theory of group to construct
erasure-robust frames. For frames with diemnsions increasing to infinity, thee
has been some relevant work such as [4], [8], [5], [7], and [6], etc.

In [2], Fickus and Mixon asked an open question whether a (p,C)-NERF
is also a (p′, C)-NERF for every p′ ∈ [0, p). In this article, we study the rela-
tions between the numerically erasure-robustness of a frame and its subframes
generally and answer the open question particularly.
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2. On the robustness against p-erasure and p′-erasure of a frame

We first establish a lemma and give some examples on whether a (p,C)-NERF
is a (p′, C)-NERF for p′ ∈ [0, p).

Lemma 1. For any M by N frame {f1, f2, . . . , fN} of a Hilbert space, let

S := {1, 2, . . . , N}, then
max

K⊆S,|K|=(1−p)N
Cond (FK) ≥ max

K′⊆S,|K′|=(1−p′)N
Cond (FK′) (1)

for any 0 ≤ p ≤ 1 and 0 ≤ p′ < p. In particular and in other words, there always

exists some subframe, which survives the deletion of some column vectors in a

frame, not as well-conditioned as the original frame.

Proof. By the spectral theorem,
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Thus, it follows that
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On the other hand, for any fixed K′⊆S with |K′| = (1− p′)N , we have

FK′F ∗
K′ =

(N − pN − 1)! (pN − p′N)!

(N − p′N − 1)!

∑

K⊆K′,|K|=(1−p)N

FKF
∗
K, (6)
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and then it follows that
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= Cond (FK′) . (7)

Combine 5 and 7, and it yields that there exist some z and w in the Hilbert
space with ‖v‖ = 1 and ‖w‖ = 1, such that

max
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Therefore, from 8, it follows that

max
K⊆K′,|K|=(1−p)N

Cond (FK) ≥ Cond (FK′) . (12)

Taking maximum on both sides, we have

K′⊆S,|K′|=(1−p′)N
max

(

max
K⊆K′,|K|=(1−p)N

Cond (FK)

)

≥ max
K′⊆S,|K′|=(1−p′)N

Cond (FK′) , (13)

but since

max
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(

max
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then we obtain that

max
K⊆S,|K|=(1−p)N

Cond (FK)≥ max
K′⊆S,|K′|=(1−p′)N

Cond (FK′) , (15)

as desired.
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More generally, we have the following theorem for compact operators on
Hilbert space:

Theorem 2. For any Hilbert space H and any compact operator T on H,

one has

max
V⊆H,dim(V)=n

Cond (T |V) ≥ max
V ′⊆H,dim(V ′)=n′

Cond (T |V ′) , (16)

and more strongly,

max
V⊆V ′,dim(V)=n

Cond (T |V) ≥ max
V ′⊆H,dim(V ′)=n′

Cond (T |V ′) (17)

for any 0 ≤ n < n′, where T |V and T |V ′ are the restrictions of T to V and V ′,

respectively.

Proof. Use the fact that TT ∗and its restrictions to subspaces are all self-adjoint
operators, and generalize the proof of the previous lemma.

For some frames, there may be some subframes that have condition numbers
smaller than the condition number of the original frame. However, for any
frame, there always exists some subframe whose condition number is greater
than the condition number of the original frame. Here, we give some examples
that a (p,C)-NERF is not necessarily a (p′, C)-NERF for some p′ ∈ [0, p).

Example 3. Let

F =

[

2 1 2
1 1 −1

]

, (18)

p = 1
3 and p′ = 0. The condition number

Cond (FS) =
6 +

√
10√

26
≈ 1.80, (19)

where S = {1, 2, 3}, and the condition number

Cond (FK) =
1

6

(

7 +
√
13
)

≈ 1.78 (20)

for K = {2, 3}. However, the maximal condition number is

max
K⊆{1,2,3},|K|=(1−p)N= 2

3
N

Cond (FK) =
1

2

(

7 + 3
√
5
)

≈ 6.85. (21)

Example 4. Let

F =

[

1 0 2
0 1 0

]

, (22)
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p = 1
3 and p′ = 0. The condition number

Cond (FS) =
√
5, (23)

where S = {1, 2, 3}, and the condition number

Cond (FK) = 1 (24)

for K = {1, 2}. However, the maximal condition number is

max
K⊆{1,2,3},|K|=(1−p)N= 2

3
N

Cond (FK) = ∞. (25)

Example 5. Let

F =

[

0.4302 0.9049 0.4389
0.1848 0.9797 0.1111

]

, (26)

p = 1
3 and p′ = 0. The condition number

Cond (FS) = 5.0799, (27)

where S = {1, 2, 3}. The maximal condition number

max
K⊆{1,2,3},|K|=(1−p)N= 2

3
N

Cond (FK) = 12.6571, (28)

min
K⊆{1,2,3},|K|=(1−p)N= 2

3
N

Cond (FK) = 5.8506, (29)

which means that all the subframes are not as well-conditioned as the original
frame.

Remark 6. From this example, we can see that some frames can be
retrenched in the number of spanning vectors, but may not be retrenched in
condition number, because all the subframes of the fame in the example above
have condition numbers greater than the original frame. However, obviously,
the union of a tight frame with any set of vectors in the space can always be
retrenched in condition number.

And we would like to make another remark:

Remark 7. The condition number of a M by N frame F corresponds
to the eccentricity of the at-most-M -dimensional ellipse F T

(

SM−1
)

in a M -

dimensional subspace of RN in geometry, and so the robustness of a NERF
against erasures corresponds to the maximal eccentricity of the at-most-M -
dimensional ellipses F T

K

(

SM−1
)

in a M -dimensional subspace, furthermore and
more geometrically, the robustness of a NERF against erasures corresponds to
the least conformality of the subframes of the NERF as maps.
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