THE MULTI-LAYER HELE-SHAW MODEL WITH
CONSTANT VISCOSITY FLUIDS CAN NOT
MINIMIZE THE SAFFMAN-TAYLOR INSTABILITY

Abstract

The Saffman-Taylor instability occurs when a less viscous Stokes fluid is displacing a more viscous one, in a rectangular Hele-Shaw cell. This could be an useful model for the study of secondary oil recovery from a porous medium with low-pressure reserves. In some previous papers was considered a large number of liquid layers with constant viscosities inserted between the initial fluids, in order to minimize this instability. We highlight some strong contradictions related to the linear stability of this flow pattern.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 4
Year: 2020

DOI: 10.12732/ijam.v33i4.13

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York (1972).
  2. [2] Carsso and G. Pa¸sa, An optimal viscosity profile in the secondary oil recovery, RAIRO M2AN - Mod. Math. et Analyse Num´erique, 32, No 2 (1998), 211-221; id=M2AN-1998-32-2-211-0.
  3. [3] P. Daripa, Hydrodynamic stability of multi-layer Hele-Shaw flows, J. Stat. Mech., Art. No P12005 (2008); doi: 10.1088/1742-5468/2008/12/P12005.
  4. [4] P. Daripa and X. Ding, Universal stability properties for multi-layer HeleShaw flows and applications to instability control, SIAM J. Appl. Math., 72, No 5 (2012), 1667-1685; doi: 10.2307/41698422.
  5. [5] P. Daripa and X. Ding, A numerical study of instability control for the design of an optimal policy of enhanced oil recovery by tertiary displacement processes, Transport in Porous Media, 93, No 3 (2012), 675-703; doi: 10.1007/s11242-012-9977-0
  6. [6] P. Daripa, Some useful upper bounds for the selection of optimal profiles, Physica A: Statistical Mechanics and its Applications, 391, No 16 (2012), 4065-4069; doi: 10.1016/j.physa.2012.03.041.
  7. [7] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca and London (1953).
  8. [8] E. Gilje, Simulations of viscous instabilities in miscible and immiscible displacement, Master Thesis in Petroleum Technology and Reservoir Chemistry, Centre for Integrated Petroleum Research (CIPR)-Bergen, Norway, Univ. of Bergen (2008).
  9. [9] S.B. Gorell and G.M. Homsy, A theory of the optimal policy of oil recovery by secondary displacement process, SIAM J. Appl. Math., 43, No 1 (1983), 79-98; doi: 10.1137/0143007.
  10. [10] S.B. Gorell and G.M. Homsy, A theory for the most stable variable viscosity profile in graded mobility displacement process, AIChE Journal, 31, No 9 (1985), 1598-1503; doi: 10.1002/aic.690310912.
  11. [11] H.S. Hele-Shaw, The flow of water, Nature, 58 (1898), 34-36; doi: 10.1038/058034a0.
  12. [12] G.M. Homsy, Viscous fingering in porous media, Ann. Rev. Fluid Mech., 19 (1987), 271-311; doi: 10.1146/annurev.fl.19.010187.001415.
  13. [13] H. Lamb, Hydrodynamics, Dower Publications, New York (1933).
  14. [14] D. Loggia, N. Rakotomalala, D. Salin and Y.C. Yortsos, The effect of mobility gradients on viscous instabilities in miscible flows in porous media, Physics of Fluids, 11, No 3 (1999), 740-742; doi: 10706631/99/11(3)/740/3/.
  15. [15] N. Mungan, Improved waterflooding through mobility control, Canad J. Chem. Engr., 49, No 1 (1971), 32-37; doi: 10.1002/cjce.5450490107.
  16. [16] G. Pa¸sa, On the stability of 3D immiscible displacement in Hele-Shaw cells, International Journal of Applied Mathematics, 29, No 3 (2016), 317-330; doi: 10.12732/ijam.v29i3.4.
  17. [17] P.G. Saffman, Viscous fingering in Hele-Shaw cells, J. Fl. Mech., 173 (1986), 73-94; doi: 10.1017/S0022112086001088.
  18. [18] P.G. Saffman and G.I. Taylor, The penetration of a fluid in a porous medium or Helle-Shaw cell containing a more viscous fluid, Proc. Roy. Soc. A, 245, No 1242 (1958), 312-329; doi: 10.1098/rspa.1958.0085.
  19. [19] G. Shah and R. Schecter, Eds., Improved Oil Recovery by Surfactants and Polymer Flooding, Academic Press, New York (1977).
  20. [20] R.L. Slobod and R.A. Thomas, Effect of transverse diffusion on fingering in miscible-phase displacement, Society of Petroleum Engineers Journal, 3, No 1 (1963), 9-13; doi: 10.2118/464-PA.
  21. [21] L. Talon, N. Goyal and E. Meiburg, Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 1. Linear stability analysis, J. Fluid Mech, 721 (2013), 268-294; doi: 10.1017/jfm.2013.63.
  22. [22] U. S. Geological Survey, Applications of SWEAT to select variable density and viscosity problems, U. S. Dept. of the Interior, Specific Investigations Report 5028 (2009).
  23. [23] A.C. Uzoigwe, F.C. Scanlon and R.L. Jewett, Improvement in polymer flooding: The programmed slug and the polymer-conserving agent, J. Petrol. Tech., 26, No 1 (1974), 33-41; doi: 10.2118/4024-PA.