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Abstract: In this paper we consider the generalized shift operator, associated
with the Dunkl operator and we investigate maximal commutators, commuta-
tors of singular integral operators and commutators of the fractional integral
operators associated with the generalized shift operator.

The boundedness of the Dunkl-type maximal commutator M, , from the
Dunkl-type modified Morrey space /T/lJpA,a(R) to /T/lJp,)Ha(R) forall 1 < p < oo
when b € BMO,(R) are proved.
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1. Introduction

In the theory of partial differential equations, together with weighted L, ,,(R")
spaces, the Morrey spaces M, y(R") play an important role. The Morrey spaces
were introduced by C.B. Morrey in 1938 in connection with certain problems
in elliptic partial differential equations and calculus of variations (see [19]).

For z € R" and t > 0, let B(x,t) denote the open ball centered at = of
radius .
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One of the most important variants of the Hardy-Littlewood maximal func-
tion defined by the formula

Mf(e) =sup|Bla o) 1wy

t>0

)

where |B(x,t)| is the Lebesgue measure of the ball B(x,t).
The operators M, and I, play important role in real and harmonic analysis
(see, for example [23]).

Definition 1. Let 1 <p < o0, 0 < A <nand [t]; = min{l,¢}. We denote
by M, »(R"™) Morrey space, and by M, y(R") the modified Morrey space, the
set of locally integrable functions f(z), x € R"™, with the finite norms

1/p
IFllag, , = sup <tA/ If(y)lpdy) :
’ rER™, t>0 B(x,t)

1/p
=~ = su t)‘/ Pd ,
15, IER&O(Hl [ ) y)

respectively.

Note that o
Mpo(R") = Mpo(R") = Ly(R"),

MpA(R™) = My A(R") N Ly(R")

and if A < 0 or A > n, then M, \(R") = MpA(R”) = O, where O is the set of
all functions equivalent to 0 on R™.

These spaces appeared to be quite useful in the study of the local behaviour
of the solutions to elliptic partial differential equations, apriori estimates and
other topics in the theory of partial differential equations.

Definition 2. Let 1 <p < 00,0 < A <n. We denote by WM, \(R") the
weak Morrey space and by WM, y(R") the modified weak Morrey space, as
the space of all functions f € WLfDOC(R”) with finite norms

_ 1/p
1 lwae,, =supr sup (£ {y € Blat): [f@]>r}) "
’ r>0 x€R™,t>0
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1Flhyse,, =swr s (107 [y e Ban: [f@)>r)"
WMy, r>0 zeR™ t>0 ! T ’

respectively.

Note that

W Ly(R") = WM, o(R") = WM, (R,
Mpa(R") € WMpAR") and || fllwag, , < 11l
Mpa(R") € WMpA(RY) and |l 5 < Ifl5, -

The commutator is defined for smooth functions fby [b,T]f = bT(f) —
T(bf), where b is a locally integrable function on R"™ and T is a Calderon-
Zygmund operator. Coifman, Rochberg and Weiss [7] stated that [b,7] is a
bounded operator on L,(R"),1 < p < oo, when b is a BMO function. Also,
Chanillo [6] proved that commutators characterize Riesz potentials on the func-
tion space BMO.

2. Definitions, notation and preliminaries

Let o > —1/2 be a fixed number and pu, be the weighted Lebesgue measure on
R, given by
dpta(z) = (2T (@ + 1)) |22 da.

For every 1 < p < oo, we denote by L, o(R) = Ly(R,dpu,) the spaces of
complex-valued functions f, measurable on R such that

1/p
1l = 161,.. = ([ 5@ duate)) <00 it pe [1.00),

and

[flooa = 1l = esssup|f(z)] if p=cc.
zER

For 1 < p < oo we denote by WL, (R), the weak Ly, o(R) spaces defined
as the set of locally integrable functions f with the finite norm

1w, , =sup 7 (wa{o € R & [f(2)] > rh'P.

Note that

Lpa CWEpa and [flyg,. <l for all f € Lya(R).
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Let B(z,t) ={y € R: |y| €] max{0,|z| — t},|z| + t[ } and By = B(0,t) =
] —t,t, t>0. Then
:uaBt = bq t2a+27
where b, = [2°T! (a + 1) (o + 1)] -
Let Ly o(R) be the space of measurable functions on R with finite norm
1/p

1 2pwa = 1Ly air) = /lf(ﬂf)lpW(fC)dua(fC) , 1<p<oo
R

and for p = oo the space Lo o o(R) = Loo(R).

Definition 3. The weight function w belongs to the class A, ,(R) for
1 < p < o0, if the following statement

p—1
_1
/ w(y)dpia(y) / w P (y)dpa(y) < (paB(z, 7))
B(z,r) (z,r)
is finite and w belongs to A o(R), if there exists a positive constant C' such
that for any x € R and r > 0

1 / 1

—_— w(y)dpa(y) < Cess sup —.

HaB($7T)B( ) ( ) ( ) yeB(z,r) w(y)
x,r

Definition 4. Let 1 < p < o0, 0 < A < 2a+ 2. We denote by M,, \ o(R)
Dunkl-type Morrey space (= D-Morrey space) as the set of locally integrable
functions f(z), x € R, with the finite norm

1/p
Il = sup (rk / [Txlf(y)l]pdua(y)> |

P t>0,z€R

Definition 5. Let 1 < p < 00, 0 < A < 2+ 2 and [¢]; = min{l,¢}.
We denote by M, 5 o(R) the Dunkl-type modified Morrey space as the set of
locally integrable functions f(x), x € R, with finite norm

1/p
lg = sup (W / [Txlf(y)l]pdﬂa(y)> |

P A t>0,z€R

Definition 6. Let 1 < p < co and 0 < A < 2a+2. A measurable
function f on R is said to belong to the Dunkl-type modified weak Morrey
space WM, \ o(R) if the quasi-norm
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1/p
fllo~ =supr sup t_A/ paly
I HWMp,A,a r>0  t>0,z2€R h {y€Be: 1| f(y)I} &

is finite.

Let Mg be the Dunkl-type sharp maximal function defined by

M} f(z) = sup / 7 W) — 5,(2)] dptaly).

r>0 HaDr -

where fp, (z) = ﬁ fBT T2 f (y) dppa(y)-
We denote by BMO,(R) (Dunkl-type BMO space) the set of locally inte-

grable functions f with finite norm

I fllBrmo, = sup
>0, xER taBy

/B 7t () — £5.(2)] dpta(y) < oo,

or

/ 172/ (0) — C| dpay).
By

fllBmo, =inf  sup
171 C >0, zeR MaDBr

Theorem 7. ([17]) 1) Let f € LY (R). If

1,
1/p

sup | pa(B)! / i, (@) — falPduaty) | = 1 lar0,.. < oo
t>0, zeR F
t

then for any 1 < p < oo,

1 fl1BrOa S 1 f1BMOp.0 < ApllflIBMOGs

where the constant A, depends only on p.
2) Let f € BMOy(R). Then, there is a constant C' > 0 such that

t
‘fB'r - th| < CHfHBMOa ln;, 0<2r<t,

where C' is independent of f,xz,r and t.

For all z, y, z € R, we put

Wa(xvyv Z) = (1 —OzyztOzay T+ UZJ/,I)AOl(xvyv Z)



498 S.A. Hasanli

where

224222 .
poy | i ey RO,
b 0 otherwise,

and A, is the Bessel kernel given by

= 2722 227 z|— 21 \a—1/2 .
o Q=2 ol PD i g

Ay(z,y,2) =
(9:2) { 0, otherwise,
where do = (D(a+1))?/(2°7'aT(a + 3)) and Ay y = [l|lz] — |yll, |z] + |y].

Properties 8. (see Rosler [24]) The signed kernel W, is even with respect
to all variables and satisfies the following properties

Wa($7y7 Z) = Wa(y,x,z) = Wa(—x,z,y),

Wa(xayv Z) = Wa(—Z,y, —.1‘) = Wa(—l‘, -Y, _Z)

and
/ Wa(z,y,2)| dua(z) < 4.
R

In the sequel we consider the signed measure v, ,, on R, given by

Walz,y,z) dpa(z) if z,y € R\ {0},
Vpy = dd.(2) if y=0,
doy(z) it z=0.

Definition 9. For z, y € R and f a continuous function on R, we put
el )= [ JEdve ).

The operators 7., x € R, are called Dunkl translation operators on R and
it can be expressed in the following form (see [24])

T+ f(y) = ca /07T fe ((z,y)p) h1(z,y,0)(sin 0)20‘ do

+ca/ fo((z,y)0) hg(x,y,H)(sinﬂ)Zo‘ do,
0
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where (z,y)p = /22 + y2 — 2|zy|cos O, f = fo+ fo, fo and fe being respectively
the odd and the even parts of f, with

— " . 2 - o F(Oé + 1)
Co = </0 (sin ) d9> = Al t1/2)’
hi(z,y,0) =1 — sgn(xy) cos

and

(z4y) [1—sgn(zy) cos O] .
h (l‘ 9) = (z,y)0 ) if Ty ?é 0,
2T, Y, 07 it oy = 0.

Using the change of variable z = (x,y)s, we have also (see [3])

T2 f(Yy) = ca /07r {f (z,9)0) + f(—=(z,9)0)
% [f ((w,y)G) - f (_(-T,y)g)] }(1 — COS 9)(Sin9)2a do.

Now we define the Dunkl-type maximal function by

My f(z) = ig%)(ﬂaBr)_l/B 72| f1(y) dpa(y)-

Theorem 10. ([11)])
1. If feLiya(R) and w € Ay o(R), then My f € WLy (R) and

||Maf||WL1,w,a S ClyaHfHLl,w,a7

where C1  depends only on «.
2 Iffelpua(R),1 <p<ooandw e Ay,(R), then Mof € Lpy.o (R)
and
||Maf||Lp,w,a S praHfHLp,w,a?

where C), , depends only on p, o.

Theorem 11. ([13])
1 If fe Miya(R), 0 <A<2a+2, then My f € WMy x o (R) and

[Maofllwmi s o < Craall fllmsa

where C ) o depends only on A\« and n.
2. IffeMpra(R), 1 <p<o000< A< 2a+ 2, then Myf € Mp o (R)
and
[MaflMyara < Corallfllrgsas

where C,, ) , depends only on p,\,a and n.
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For a real parameter oo > —1/2, we consider the Dunkl operator, associated
with the reflection group Zs on R:

Mol f)(a) = - f(a) +

Note that A_/, = d/dx.
For o > —1/2 and A € C, the initial value problem:

Ao(f)(@) = Af(x), f(0)=1, z€R
has a unique solution E,(Az) called Dunkl kernel [8, 20, 26] and given by
Eo(Ax) = jo(idz) +

204; 1 (f(fc‘) —Qf(—$)> . (2.1)

Az
YR -Ol 2 ) )
2(a+1)j +1(iAx), z€R
where j, is the normalized Bessel function of the first kind and order « [27],
defined by

o)

LN o Jal2) _ (=1)"(2/2)*
Ja(z) =2°T(a+ 1) o _F(a+1)z()n!a(n+a+1)’ zeC.

We can write for x € R and A € C' (see Rosler [24], p. 295)

« 1 .

Note that E_;js(A\z) = e,
The Dunkl transform F, of a function f € L; o(R), is given by

Fof(A) = /REa(—i)\a:) f(z)dpa(x), X€ER.

Here the integral makes sense since |E, (iz| < 1 for every x € R [24], p. 295.
Note that F_; /5 agrees with the classical Fourier transform F, given by:

Ff(\) = (2m) /2 /R e f(z)dzr, A€ R.

Proposition 12. (see Soltani [21])
(i) If f is an even positive continuous function, then 7, f is positive.
(ii) For all € R the operator 7, extends to Ly (R), p > 1 and we have
for f € L, «(R),
172 fllpa < 4l fllp,a- (2:2)

(iii) For all x, A € R and f € Ly o(R), we have
Fo (12f) (N) = Eq(iXx) Fo f(N).
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Let f and g be two continuous functions on R with compact support. We
define the generalized convolution *, of f and g by

[ *a g(x) = /fof(—y)g(y) dua(y), =€ R.

The generalized convolution *, is associative and commutative [24]. Note that
*_1/9 agrees with the standard convolution *.

Proposition 13. (see Soltani [21])

(i) If f is an even positive function and g a positive function with compact
support, then f %, g is positive.

(ii) Assume that p, q, r € [1,4o00| satisfying 1/p+1/q = 14+1/r (the Young
condition). Then the map (f,g) — [ *q g, defined on E. x &, extends to a
continuous map from Ly o(R) X Lqo(R) to L, o(R), and we have

Hf *a 9||T,a < 4||f||p,a HQHq,a'

(ii) For all f € Ly o(R) and g € Ly o(R), we have

Fo (f *a 9) = (Faf) (Fag) -

3. Main results and proofs
3.1. Maximal commutators in Dunkl-type modified Morrey spaces

The commutator generated by the Dunkl-type maximal operator M, for a given
measurable function b is formally defined by

[Maa b]f = Ma(bf) - bMa(f)

and for a given measurable function b, the Dunkl-type maximal commutator is

defined by

1
M, T) :=su
b,a(f)( ) r>lé)) ,uaBr

[ 7l0@) — b)) 1@ ldiealv)

T

for all x € R.
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Lemma 14. Let 1 < s < oo and b € BMO(R). Then there exists C > 0
such that for all x € R

M (Mo f)(2) < Clb]lBro, ((Ma(Maf)S)%(xHM (Mal )7 (& ))
holds.

Proof. From the boundedness of the Dunkl-type maximal operator M, and the
pointwise inequality we have

Mgz(Mb,af)(x) < QMa(Mb,af)($)7 r € R.

Since My o(f)(y) = Sup Myt~ (f)(y) we get

Mo (D) = 5 [ 7(1b) = BN (2)

o Bt
By

1
o By

<

[ () = b :) a2

t

+ o) - mﬁ / 1) dpa(2)
By

MaBt (B/Tyb ) = b, | dpta (2 ) (B/Tyf ) )>

) bl = [ ) Edna2)

(6%
By

C|bllBrro, (Mal f]°):

W [

IN

() + [b(y) bst\ﬁ B/ A1) dpa(2).

From the Holder inequality we have

HalBr /7- !b( ) — bBt‘,ualBt (B/ Ty[f](z)dua(z))] dpte(y)

t

S B (B/Txb ) = bp, " dpaly ) (B/Tx Mo f)*(y)dpa(y ))

1
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+ /ng (168, — bp, Mo f(y)] dita(y)

T

< C|bllBron (Ma(Maf)*)

HozBr

0 =

().

Therefore we get

Ma(Maf) (o) = 51— [ Mo 0o (0)

1
s

< Clllzaro, (Ma(Maf)")* (2)

1
s

roup L (1) <y>dua<y>>

1
s

< Clblzaro, (Ma(Maf)?) (x)) -

Thus Lemma 14 is proved. O

w =

(%) + Mo (Mal f]7):

Proposition 3.1. ([15]) For all weights w and all nonnegative function f
satisfying v({x € X : f(x) > p}) < oo for all B > 0, there exists a positive
constant C' such that

1. If v(X) = oo, then

/f Wiv(y) < C [ MEF@Mg(w)iv(y)

X

2. If v(X) < oo, then

/ F@)g(y)dv(y) < / M £(y) Mg(y)du(y) + Ca(X)vx (£),

X

where g is nonnegative function, g(X) = [ g(x)dv(z), vx(f) =
X

i()){f(y)dl/

Lemma 15. Let 1 <p < oo and w € Ay, o(R). Then

1 1
fwrllL, o < Cllwr MEFIL,q

where the constant C' > 0 is independent of f.
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Proof. Let (X, v) be a homogeneous type space. According to Proposition 3.1,
we have

I, <Cswp / F@)9W)w? (1) dpiay)

lollz, <

sup / e (y)dv(y)

||9||L o =1

sup / M £ ()M (g ) () dv ()]

||9||L =

Hence,

|fwPls,. <C  sup / M £ () Ma(g0%) () dta ()|
llgll

P

ey

Finally by using the Holder inequality and Theorem 10, we get

1 1 _1 1
IfwrllL,e <O sup  Jwr Miflz,qllo”? Malgwr)lz,,
Iz, <1

1 1
SCMwPIWMﬁN%ﬂN@QSQWMﬁN%w
QL/

NeY

Thus Lemma 15 is proved. U

Theorem 16. Let b € BMOy(R), 1 < p < o0 and w € A, «(R). Then
My, o is bounded on the space Ly, o(R).

Proof. By using Lemma 14, Lemma 15 and Theorem 10, we have M, is
bounded on the space Ly, «(R). O

The operators My, and [M,,b] are essentially different from each other.
For example, My, is a positive and sublinear operator, but [M,,b] is neither
positive nor sublinear. However, if b satisfies some additional conditions, then
the operator M, is controlled by [Mg, b].

Theorem 17. Let 1 <p < oo and 0 < A < 2a+ 2. Then the commutator
My, o is bounded on My, 5 o(R) if and only if b € BMO4(R).
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Proof. Sufficiency: Let 1 <p<oo,0 <A <2a+2, f€ MpA,a(R), x € R. We
have

[ 7 BV @idnaly) < [ 7 My () M () i)
By R

Taking into account the properties of A, ,(R) we can easily see that (M, x5,)° €
A, o(R) for any 0 < 6 < 1. Then by using Lemma 15 and Theorem 16 we obtain

/ 1y Mo fP (2)dpa(y)
By

< C bllhaso, [ A1 P (Maxs, () duaty)

R

IN

C Wllaro, [ A1 1P(e)driaty)

B

b0, > [ Bl P (s 0) daa(y)

—
I Byi11,\By;,

< C Ibluso, | Tl P @)dia(w)

B

» o T(2a+2)0
+ C b0, Y / Tyl f] W@W

—
I Byji1,\Byj,.

dpia(y)

[o¢]

i+1 1A

< C bl 115 | +Zl T ng[ga ]
J:

< 1 1|b]% P_
< C[rly ||bHBMOQ HfHMpA
Necessity:  Let My, be bounded from Mp,)\7a(R) to /T/lip,)va(R),

1 <p<oo.

Obviously, y
p

My = 0 (107 [ P @ et
By
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Now we consider f = xp,. It is easy to compute that

t>0,z€R

1/p
sz, ~ sup | [T / TyXBT(x)dua(y))

Then

IN

IN

IN

<

<

By

Q

sup | [t];° / X8, (y)dpia(y)

t>0,z€R

Q

B(z,t)CBr

1

HOlBt Bt

5
/"LO(Bt By

1 / 1
T.0(x) — m0(y)| dppe (y)dpa (2
o e 7))l die ) )

|72b(x) — fB.] dpa(2)

T.b(x) —
(=) Ha Bt

/B t sz(y)dﬂa(y)‘ dpa(2)

1 1
7. (b(z) — b diie, () diig (2
MaBt/Bt,uaBt Bt‘ (b(z) = b(y))| dpa(y)dpa(z)
1

faBy By

—2a-2[;7)
cr2e Q[thHJV—’b,aXBt||/\7P,A,a||><Bt||zp,’M

My o x B, (2)pa(2)

DY
7+7+)\ 2c;j—2+2a;-2_2a_2

o, ' <cC.

Thus Theorem 17 is proved.

Theorem 18. Let 0 < A < 2a+ 2 and b € BMOy(R). Then the

commutator My, is bounded from /T/lJLA,a(R) to WM17A7Q(R).

1/ ESN.
swp (107 B(z, )0 By, P

O

Proof. Let 0 < A < 2a+2and f € /T/lJL Ao (R). This assertion is easily obtained
from the inequality f(z) < M, f(x). Finally, by using (3.1) and Theorem 10,

we get

1Mo f vy i1, o < 1Mo (Moo f)lly i1
1\« 1\«
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1 1
< bl ro, | (Ma(Maf))= + Mo (Mol FI*)* lly 57, |

< ||b||BMOa ||f||.//\>l/1,)\,a‘
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