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Abstract: In this paper, we investigate the existence and uniqueness of
positive solutions of boundary value problems (BVPs) for fractional differen-
tial equations (FDEs) with boundary conditions (BCs) involving the Riemann-
Liouville (RL) fractional derivative of the form:







−Dσ
0+x(t) = f(t, x(t)), 0 < t < 1,

x(0) = x′(0) = ... = x(n−2)(0) = 0,

x(1) = ϑ
∫ 1
0 x(s)ds, 0 < ϑ < σ,

where 2 ≤ n− 1 < σ ≤ n and σ ∈ R. The technique employed is coupled lower
and upper solutions with fixed point theory on cone. An example is presented
to justify our results.
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1. Introduction

FDEs with BCs have applications in several fields such as applied mathematics,
physics and engineering, see [11, 13, 14, 17]. Existence theorems of multipoint
have extensively studied using Leray-Schauder, coincidence degree theory, fixed
point index theory, and fixed point theorems in cones. For more details, we refer
the reader to [10, 12, 19, 22] and the references therein. On the other hand,
investigating the existence and uniqueness of solutions and positive solutions of
BVPs for nonlinear FDEs of the following type: functional, evolution, impulsive
with integral BCs, can be found in [3, 4, 2, 1, 5, 6, 7, 8, 9, 15]. For instance,
Benchohra et al., in [7] studied some results on FDEs with mixed BCs of the
form

{

Dσ
0+x(t) = f(t, x(t)), t ∈ I = [0, T ],

x(0) + µ
∫ T

0 x(s)ds = x(T ),

where 0 < σ ≤ 1, Dσ
0+ is the Caputo fractional derivative of order σ, µ ∈ R,

and f : I×E → E is a given function satisfying some conditions, E is a Banach
space with sup norm ‖ · ‖.

In [19] Wang et al., discussed the following nonlinear FDE with integral
BCs

{

Dσ
0+x(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = 0, x(1) =
∫ 1
0 x(s)ds,

where 1 < σ ≤ 2, f : [0, 1] × [0,∞) → [0,∞) is a continuous and Dσ
0+ is the

standard RL fractional derivative.
Pawar and Salunke in [16] studied the existence and uniqueness of positive

solutions of the following problem

{

Dσ
0+x(t) = f(t, x(t)), t ∈ I = [0, 1],

x(0) + ϑ
∫ 1
0 x(s)ds = x(1),

where Dσ
0+ is the standard RL fractional derivative and f : [0, 1] × [0,+∞) →

[0,+∞) is a continuous.
Motivated by the above mentioned works, in this paper, we study the exis-

tence and uniqueness of solution for a class of FDE with BCs of the type







−Dσ
0+x(t) = f(t, x(t)), 0 < t < 1,

x(0) = x′(0) = ... = x(n−2)(0) = 0,

x(1) = ϑ
∫ 1
0 x(s)ds, 0 < ϑ < σ,

(1)

where 2 ≤ n − 1 < σ ≤ n is the order of RL fractional derivative Dσ
0+ and

0 < ϑ < σ .
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To our knowledge, fewer works appeared to investigate in positive solutions
to FDEs with BCs. Our analysis relies on the method of lower and upper
solutions and some fixed point theorems on a cone. The results obtained can
be more general, and some of them in the literature are as special cases, so they
are recent contributions to this emerging field.

The rest of this paper is organized as follows: Section 2, devoted to the
derivation of Green’s function and its properties. Also, a discussion of prelimi-
nary facts is presented in this section. Section 3, deals with proof of existence
result by using the lower and upper solutions for FDEs with BCs. The last
section gives an example to demonstrate the main results.

2. Preliminary results

Definition 1. [13] For given a function f : (0,∞) → R, then RL fractional
integral of order σ > 0 is given by

Iσ0+f(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1f(s)ds,

provided that, the integral exists.

Definition 2. [13] For given a function f : (0,∞) → R, then RL fractional
derivative of order σ > 0 is defined by

Dσ
0+f(t) =

1

Γ(n− σ)

(

d

dt

)n ∫ t

0
(t− s)n−σ−1f(s)ds,

where n − 1 < σ ≤ n, and the right side is pointwise defined on (0,∞) and
n = [σ] + 1.

Lemma 1. [11] Let σ > 0 and u ∈ C(0, 1) ∩L(0, 1). Then the linear FDE

Dσ
0+u(t) = 0

has unique solution

u(t) = c1t
σ−1 + c2t

σ−2 + · · ·+ cnt
σ−n.

Moreover, if u(t),Dσ
0+f(t) ∈ C(0, 1)∩L(0, 1), then Iσ0+Dσ

0+u(t) = u(t)+c1t
σ−1+

c2t
σ−2 + · · ·+ cnt

σ−n, for some ci ∈ R, i = 1, 2, ..., n.
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Theorem 3. Let n − 1 < σ < n and ϑ 6= σ. Assume u(t) ∈ C[0, 1], then
the unique solution of following problem

Dσ
0+x(t) = u(t), 0 < t < 1, (2)

x(0) = x′(0) = ... = x(n−2)(0) = 0, x(1) = ϑ

∫ 1

0
x(s)ds, (3)

is given by

x(t) =

∫ 1

0
G(t, s)u(s)ds,

where G(t, s) is the Green’s function defined by

G(t, s) =

{

[t(1−s)]σ−1(σ−ϑ+ϑs)−(σ−ϑ)(t−s)σ−1

(σ−ϑ)Γ(σ) , 0 ≤ s ≤ t ≤ 1,
[t(1−s)]σ−1(σ−ϑ+ϑs)

(σ−ϑ)Γ(σ) , 0 ≤ t ≤ s ≤ 1.
(4)

Proof. Applying Iσ0+ on both sides of (2). It follows from lemma 1 that

x(t) = −
∫ t

0

(t− s)σ−1

Γ(σ)
u(s)ds + c1t

σ−1 + c2t
σ−2 + · · ·+ cnt

σ−n,

where c1, c2, ..., cn ∈ R. From (3), we have c2 = c3 = ... = cn = 0. Then the
general solution of (2) is

x(t) = −
∫ t

0

(t− s)σ−1

Γ(σ)
u(s)ds + c1t

σ−1. (5)

Hence, by the condition x(1) = ϑ
∫ 1
0 x(s)ds, we get

c1 =

∫ 1

0

(1− s)σ−1

Γ(σ)
u(s)ds+ ϑ

∫ 1

0
x(s)ds.

Put the value of c1 in (5), we obtain

x(t) = −
∫ t

0

(t− s)σ−1

Γ(σ)
u(s)ds+ tσ−1

∫ 1

0

(1− s)σ−1

Γ(σ)
u(s)ds

+ϑtσ−1

∫ 1

0
x(s)ds. (6)
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Let A := −
∫ 1
0 x(s)ds. By the formula (6) and Fubini’s theorem, we get

∫ 1

0
x(t)dt = −

∫ 1

0

∫ t

0

(t− s)σ−1

Γ(σ)
u(s)dsdt

+

∫ 1

0
tσ−1

∫ 1

0

(1− s)σ−1

Γ(σ)
u(s)dsdt+ ϑA

∫ 1

0
tσ−1dt

=

∫ 1

0

s(1− s)σ−1

σΓ(σ)
u(s)ds+

ϑA
σ
,

which implies

A =

∫ 1

0

s(1− s)σ−1

(σ − ϑ)Γ(σ)
u(s)ds. (7)

Substitute value of A from (7) into (6), we have

x(t)

=

∫ 1

0

[σ − ϑ+ ϑs

σ − ϑ

] [(1− s)t]σ−1

Γ(σ)
u(s)ds −

∫ t

0

(t− s)σ−1

Γ(σ)
u(s)ds

=

∫ t

0

[σ − ϑ+ ϑs

σ − ϑ

] [(1− s)t]σ−1

Γ(σ)
u(s)ds −

∫ t

0

(t− s)σ−1

Γ(σ)
u(s)ds

+

∫ 1

t

[σ − ϑ+ ϑs

σ − ϑ

] [(1− s)t]σ−1

Γ(σ)
u(s)ds

=

∫ t

0

[(σ − ϑ+ ϑs)[(1− s)t]σ−1 − (σ − ϑ)(t− s)σ−1]

(σ − ϑ)Γ(σ)
u(s)ds

+

∫ 1

t

(σ − ϑ+ ϑs)[(1− s)t]σ−1

(σ − ϑ)Γ(σ)
u(s)ds

=

∫ 1

0
G(t, s)u(s)ds.

Lemma 2. For all σ ∈ (n− 1, n] and ϑ ≥ 0. The Green function given by
(4) satisfies the following properties:
(i) G(t, s) ≥ 0, t, s ∈ (0, 1).
(ii) (σ − ϑ)G(1, s) > 0, for all s ∈ (0, 1) if and only if σ 6= ϑ.

(iii) G(t, s) ≤ 1
(σ−ϑ)Γ(σ) for all t, s ∈ [0, 1] and ϑ ∈ [0, σ).

(iv) For n− 1 < σ ≤ n and 0 < ϑ < σ, we have

tσ−1G(1, s) ≤ G(t, s) ≤ σ

ϑ
G(1, s), t, s ∈ (0, 1). (8)
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Proof. The proofs of (i), (ii) and (iii) are easy, so we omit it. In the follow-
ing, we shall prove (iv) in two cases :
Case (i). In 0 < t < s < 1,

G(t, s)

G(1, s)
= tσ−1 ≤ tσ−1

(

1 +
σ − ϑ

ϑs

)

≤ tσ−1 σ

ϑs
≤ tσ−2σ

ϑ
<
σ

ϑ
.

Case (ii). In 0 < s < t < 1,

G(t, s)

G(1, s)
=
tσ−1(1− s)σ−1(σ − ϑ+ ϑs)− (σ − ϑ)(t− s)σ−1

(1− s)σ−1(σ − ϑ+ ϑs)− (σ − ϑ)(1− s)σ−1
.

Since s ≥ ts, we deduce that

G(t, s)

G(1, s)
≥ tσ−1[(1 − s)σ−1(σ − ϑ+ ϑs)− (σ − ϑ)(1− s)σ−1]

(1− s)σ−1(σ − ϑ+ ϑs)− (σ − ϑ)(1− s)σ−1

= tσ−1.

Now from (ii) the inequality (8) is satisfied.

Lemma 3. Let D be a subset of the cone K of semi-order Banach space
E, T : D → E be nondecreasing. If there exists x0, y0 ∈ D such that x0 ≤ y0,
(x0, y0) ⊂ D and x0, y0 are the lower and upper solutions of equation x−T (x) =
0, then the equation x−T (x) = 0 has maximum solution and minimum solution
x∗, y∗ in (x0, y0) such that x∗ ≤ y∗, when one of the following assumptions hold:

(i) T is compact continuous and K is normal;

(ii) T is continuous and K is regular;

(iii) T is continuous or weak continuous and E is reflexive, K is normal.

Now, let E = C[0, 1]. Then E is a Banach space endowed with norm ‖x‖ =
supt∈[0,1] |x(t)|. The Cone K ⊂ E is defined by

K = {x ∈ E| x(t) ≥ 0, 0 ≤ t ≤ 1}.

Assume that u(t) = f(t, x(t)), then it follows from Theorem 3 that the problem
(1) has a solution if and only if the operator T defined by

T (x) =

∫ 1

0
G(t, s)f(s, x(s))ds

has a fixed point. First of all, we give the definition of lower and upper solutions
of the operator T .
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Definition 4. The function v(t) ∈ E is called a lower solution of operator
T if

Dσv(t) ≤ f(t, v(t)), v(t) ≤ Tv(t), 0 < t < 1,

and the function w(t) ∈ E is called a upper solution of operator T if

Dσw(t) ≥ f(t, w(t)), w(t) ≥ Tw(t), 0 < t < 1.

We consider the following set of assumptions:

(A1) f : [0, 1] × [0,+∞) → [0,+∞) is continuous, f(t, ·) is nondecreasing for
each t ∈ [0, 1], and there exists a positive constant k such that f(t, ·) is
strictly increasing on [0, k] for each t ∈ [0, 1].

(A2) 0 < limx→+∞ f(t, x(t)) < +∞, for each t ∈ [0, 1].

(A3) v0 and w0 are a lower and upper solutions of problem (1) satisfying v0 ≤
w0, 0 ≤ t ≤ 1.

3. Main results

In this section, we prove the existence and uniqueness of positive solution of
the problem (1).

Theorem 5. (Existence Theorem) Assume that (A1)−(A3) hold. Then
the problem (1) has a positive solution.

Proof. We will give proof in the following four steps
Step 1. T : K → K is completely continuous.
At first, T : K → K is continuous according to continuity and non-negativeness
of G(t, s) and f(t, x). Next, Let M ⊂ K be a bounded set, i.e., there exists a
positive constant ℓ > 0 such that ‖x‖ ≤ ℓ ; ∀x ∈M. Let L = max0≤t≤1,0≤x≤ℓ |f(t, x)|+
1. Then, for every x ∈M, we get

|Tx(t)| ≤
∫ 1

0
G(t, s) |f(s, x(s))| ds ≤ L

(σ − ϑ)Γ(σ)
, ∀t ∈ [0, 1].
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Consequently, T (M) is bounded. Finally, we set x ∈M, then for each t ∈ [0, 1]
the following inequalities are satisfied by means of Lemma 2:

Tx(t) =

∫ 1

0
G(t, s)f(s, x(s))ds ≥ tσ−1

∫ 1

0
G(1, s)f(s, x(s))ds

≥ tσ−1ϑ

σ

∫ 1

0
max
t∈[0,1]

{G(t, s)}f(s, x(s))ds

≥ tσ−1ϑ

σ
max
t∈[0,1]

{

∫ 1

0
G(t, s)f(s, x(s))ds

}

=
tσ−1ϑ

σ
‖Tx‖,

and

|(Tx)′(t)| =
∣

∣

∣
−

∫ t

0

(t− s)σ−2

Γ(σ − 1)
f(s, x(s))ds

+

∫ 1

0

(σ − ϑ+ ϑs)(1− s)σ−1tσ−2

(σ − ϑ)Γ(σ − 1)
f(s, x(s))ds

∣

∣

∣

≤ L

Γ(σ − 1)

∫ t

0
(t− s)σ−2ds+

L

Γ(σ − 1)σ

+
ϑL

(σ − ϑ)Γ(σ − 1)

∫ 1

0
s(1− s)σ−1ds

≤ L

Γ(σ)
+

L

Γ(σ − 1)
+

Lϑ

(σ − ϑ)Γ(σ − 1)σ(σ + 1)
:= N.

Hence, for all t1, t2 ∈ [0, 1] with t1 < t2, we obtain

‖Tx(t2)− Tx(t1)‖ ≤
∫ t2

t1

|(Tx)′(s)|ds ≤ N(t2 − t1).

Thus, T (M) is an equicontinuous. As a consequence of Arzela-Ascoli Theorem,
we conclude that T (M) is compact. Therefore T : K → K is completely
continuous.

Step 2. The operator T is an increasing.
Let x0, y0 ∈ K with x0 ≤ y0. Then by (A1), we obtain

Tx0(t) =

∫ 1

0
G(t, s)f(s, x0(s))ds ≤

∫ 1

0
G(t, s)f(s, y0(s))ds ≤ Ty0(t).

Thus, T is an increasing operator. Operation the definition of the lower and
upper solution, we obtain Tx0 ≥ x0 and Ty0 ≤ y0. Hence T : (x0, y0) → (x0, y0)
is a compact continuous operator.
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Step 3. By (A2), there exists positive constantsM1 and N such that x ≥ N

it holds f(t, x(t)) ≤M1.
But in exchange, since f : [0, 1] × [0, N ] is continuous (by (A1)), there exists a
positive constant M2 > 0 such that f(t, x(t)) ≤ M2. Let M = max{M1,M2}.
Then we have f(t, x(t)) ≤M, ∀x ≥ 0.
Now, let us take the following problem

{

Dσ
0+w(t) +M = 0, 0 < t < 1, 2 ≤ n− 1 < σ ≤ n,

w(0) = w′(0) = ... = w(n−2)(0) = 0, w(1) = ϑ
∫ 1
0 w(s)ds,

(9)

where 0 < ϑ < σ and σ ∈ R. From the Theorem 3, we have the solution of (9)
is

w(t) =

∫ 1

0
G(t, s)Mds ≥

∫ 1

0
G(t, s)f(s,w(s))ds = Tw(t),

which means that w(t) is an upper solution of T .
On the other hand, it is obvious that v(t) ≡ 0 is a lower solution of T . Hence
v(t) ≤ w(t).
Step 4. Since K is a normal cone, and by utilize Lemma 3, we deduce that
there exists a fixed point x(t) ∈ (0, w(t)) of T . Therefore, the problem (1) has
a positive solution, which completes the proof.

Theorem 6. (Uniqueness Theorem) Assume that f satisfies

|f(t, x)− f(t, y)| ≤ b(t)|x− y|, ∀t ∈ [0, 1], x, y ∈ R
+,

where b : [0, 1] → R
+ is a continuous. If

∫ 1

0
sσ−1(1− s)σ−1(σ − ϑ+ ϑs)b(s)ds < (σ − ϑ)Γ(σ), (10)

then the problem (1) has unique positive solution.

Proof. We known that the problem (1) has a unique positive solution if the
operator Tm is a contraction mapping for m sufficiently large. Indeed, by the
definition of Green’s function G(t, s), then for x, y ∈ K, we have the following
estimate

|Tx(t)− Ty(t)|

=
∣

∣

∣

∫ 1

0
G(t, s)f(s, x(s))ds −

(

∫ 1

0
G(t, s)f(s, y(s))ds

)
∣

∣

∣
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≤
∫ 1

0
G(t, s)

∣

∣

∣
f(s, x(s))− f(s, y(s))

∣

∣

∣
ds

≤
∫ 1

0
G(t, s)b(s)

∣

∣

∣
x(s)− y(s)

∣

∣

∣
ds

≤
∫ 1

0

‖x− y‖
(σ − ϑ)Γ(σ)

[t(1− s)]σ−1(σ − ϑ+ ϑs)b(s)ds

≤ ‖x− y‖tσ−1

(σ − ϑ)Γ(σ)

∫ 1

0
(1− s)σ−1(σ − ϑ+ ϑs)b(s)ds.

Let I =
∫ 1
0 (1− s)σ−1(σ − ϑ+ ϑs)b(s)ds. Then we have

|Tx(t)− Ty(t)| ≤ Itσ−1

(σ − ϑ)Γ(σ)
‖x− y‖.

Similarly,

∣

∣T 2x(t)− T 2y(t)
∣

∣

=

∫ 1

0
G(t, s)

∣

∣

∣
f(s, Tx(s))− f(s, Ty(s))

∣

∣

∣
ds

≤
∫ 1

0
G(t, s)b(s)

∣

∣

∣
Tx(s)− Ty(s)

∣

∣

∣
ds

≤
∫ 1

0
G(t, s)a(s)

Itσ−1

(σ − ϑ)Γ(σ)
‖x− y‖ds

≤ I‖x− y‖tσ−1

(σ − ϑ)2Γ2(σ)

∫ 1

0
sσ−1(1− s)σ−1(σ − ϑ+ ϑs)b(s)ds.

Let J =
∫ 1
0 s

σ−1(1− s)σ−1−qb(s)ds. Then

|T 2x(t)− T 2y(t)| ≤ IJtσ−1

(σ − ϑ)2Γ2(σ)
‖x− y‖.

It follows from the mathematical induction that

|Tmx(t)− Tmy(t)| ≤ IJm−1tσ−1

(σ − ϑ)mΓm(σ)
‖x− y‖.

For sufficiently large m, by (10), we have

IJm−1

(σ − ϑ)mΓm(σ)
=

I

(σ − ϑ)Γ(σ)

( J

(σ − ϑ)Γ(σ)

)m−1
< 1.
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Hence, it holds
‖Tmx(t)− Tmy(t)‖ < ‖x− y‖,

which implies the operator Tm is a contraction mapping form sufficiently large.
So, the problem (1) has a unique positive solution. This completes the proof.

Example 1. Consider the following nonlinear FDE with integral BCs

{

−D
7

2

0+x(t) =
1

(t+4)2

(

|x(t)|
1+|x(t)| + 5t2

)

, 0 < t < 1,

x(1) = 2
∫ 1
0 x(s)ds, x

(k)(0) = 0, k = 0, 1, 2,
(11)

where σ = 7
2 (n = 4), ϑ = 2, f(t, x) = 1

(t+4)2

(

|x|
1+|x| + 5t2

)

. It is easy to see that

f is continuous and nonnegative function. Moreover, for x, y ∈ R
+, |f(t, x) −

f(t, y)| ≤ 1
(t+4)2

|x − y|. Therefore, Theorem 6 is satisfied with b(t) = 1
(t+4)2

∈
C([0, 1],R+). In addition, by some direct calculation, we find that

∫ 1

0
sσ−1(1− s)σ−1(σ − ϑ+ ϑs)b(s)ds ≈ 0.002 <

45
√
π

16
= (σ − ϑ)Γ(σ).

An application of Theorem 6 implies that the problem (11) has a unique

positive solution. On the other hand, it is clear that f(t, ·) = 1
(t+4)2

(

|·|
1+|·|+5t2

)

is nondecreasing for each t ∈ [0, 1]. Also,

0 < lim
x→∞

( 1

(t+ 4)2

( |x(t)|
1 + |x(t)| + 5t2

))

<
5

16
< +∞

(

M =
5

16

)

.

Finally,

w0(t) =

∫ 1

0
G(t, s)Mds =

225

256

√
π
(5t

5

2

9
− 3

7
(t

7

2 − (t− 1)
7

2 )
)

, 0 < t < 1

is an upper solution of (11). Obviously, v0(t) = 0 is a lower solution of (11)
and v0(t) ≤ w0(t), 0 ≤ t ≤ 1. Thus all the conditions (A1)− (A3) are satisfied.
Hence, by Theorem 5, the FDE (11) has a positive solution on [0, 1].
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