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Abstract: The problem of interval estimating for the scale parameter θ in a
two parameter Weibull distribution is addressed. The pivotal quantities whose
percentiles can be used to construct confidence limits for the scale parameter
θ are derived. Therefore in this paper, an exact, asymptotic and approximate
(1−α)100% confidence intervals for the scale parameter θ of the two parameter
Weibull distribution for the case of the one sample problem are derived. The
three confidence intervals are simple and easy to compute. A Monte Carlo
simulation study is performed to compare the efficiencies of the three confidence
interval methods in terms of two criteria, coverage probabilities and average
widths. The simulation results showed that the proposed confidence intervals
perform well in terms of coverage probability and average width. Additionally,
when the three methods are compared, it is found that the performance of the
method depends on the value of the shape parameter β, scale parameters θ and
sample size n used. The three methods are illustrated using a real-life data set
which also supported the findings of the simulation study to some extent.
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1. Introduction

TheWeibull distribution was introduced several decades ago byWaalobi Weibull
[1]. It is a flexible distribution that can encompass characteristics of several
other distributions. For example, it approximates the normal distribution as
the shape parameter is about 3.6 in which case the skewness become zero, [2].
Also, it becomes the exponential and Rayleigh distributions when the shape pa-
rameter is equal to one and two, respectively [3]. This property has given rise
to widespread applications. The Weibull distribution has many applications in
statistics and other areas. For further details on applications of the Weibull
distribution, we refer the readers to, for example; [4], [5], [6] and [7].

The general theory of confidence interval estimation was developed by [8]
and widely used technique of constructing a confidence interval (CI) of the pa-
rameter for a probability distribution is based on the pivotal quantities approach
which determines what is known as an exact confidence interval as mentioned
by [9] and [10]. The pivotal quantity method is valid for any sample size n as
mentioned by [11], [12] and [13]. Therefore, a confidence interval (CI) can be
defined as a range of values that gives the user for a sense of precise statistic
estimates of the parameter, [14]. When a large sample size n is applied, an
asymptotic confidence interval is mostly used to construct a sequence of the es-
timator θ̂n of θ with a probability density function f(.; θ) that is asymptotically
normally distributed with mean θ and variance σ2

n(θ) ([15], [16], [17]).

Because of its importance, many estimation methods have been proposed
for the Weibull distribution for both complete and censored samples data. Re-
cently, many main estimation methods have been proposed by many authors.
The most common estimation method is the maximum likelihood estimation
(MLE) which has attractive efficiency properties and is asymptotically unbi-
ased. The use of the proposed estimation methods depends on the area of
application. For further details on the main estimation methods, we refer the
readers to [18], [7], [19], [20] and [21] among others.

In this paper, we derive an exact, asymptotic and approximate (1−α)100%
confidence intervals for the scale parameter (θ) of the two parameter Weibull
distribution for the case of the one sample problem using pivotal-based ap-
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proach. The evaluation of the efficiency for these proposed confidence intervals
will be proved via conducting an extensive Monte-Carlo simulation study to
compare the coverage probability (CP) and the average width (AW). Further-
more, the three methods will be illustrated using a real-life data in order to
demonstrate how the proposed confidence intervals can be applied in practice
and support the findings of the simulation study.

The structure for the rest of this paper is organized as follows: In Section
2, materials and methods are discussed. In Section 3, the three proposed confi-
dence interval methods for the scale parameter (θ) of the two parameter Weibull
distribution are derived. A Monte-Carlo simulation study has been conducted
in Section 4. In Section 5, a real-life data are analyzed to illustrate the imple-
mentation of the methods. Finally, some concluding remarks are presented in
Section 6.

2. Materials and methods

In this section, we will discuss the criteria for the efficiency comparison among
the considered confidence intervals and the essential conditions for the work in
this study. In addition, we will derive the pivotal quantity that will be used in
this study to construct the proposed (1 − α)100% confidence interval (CI) for
the population mean of the one parameter exponential distribution.

2.1. Criteria for the efficiency comparison

The efficiency comparison criteria among the three estimation methods of the
(1 − α)100% confidence intervals are the coverage probability (CP) and the
average width (AW) of the resulting confidence intervals. It is acknowledged
that the CP and AW are useful criteria for evaluating the confidence intervals.
Let CI=(L(X),U(X)) be a confidence interval of a parameter θ based on the
dataX having the nominal (1−α)100% confidence level, where L(X) and U(X),
respectively, are the lower and upper endpoints of this confidence interval. The
following definitions provide the efficiency comparison criteria in this study:

Definition 1. The coverage probability (CP) associated with a confidence
interval CI=(L(X),U(X)) for the unknown parameter θ of a probability density
function f(x; θ) is measured by Pθ{θ ∈ (L(X), U(X))} (see [16]).

Definition 2. The length of a confidence interval, W=U(X) - L(X), is
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simply the difference between the upper U(X) and lower L(X) endpoints of
a confidence interval CI=(L(X),U(X)). The expected length of a confidence
interval CI=(L(X),U(X)) is given by Eθ(W ) (see [22], [23], [24]).

2.2. Essential conditions for the study

Throughout the following discussion, the essential conditions for the work in
this study are denoted by (C1)–(C3) and will be given as follows:

(C1) Let X1,X2, . . . ,Xn be a random sample of size n from a population
of two parameter Weibull distribution with shape parameter β (known)
and scale parameter θ such that β and θ ∈ Ω where Ω = {(β, θ) : θ <

β < ∞; 0 < θ < ∞}. The probability density function (pdf) of the two
parameter Weibull random variable X is given by equation (1) below:

f(x;β, θ) =



















β

θ
xβ−1 e

−
xβ

θ ; x > 0, β > 0, θ > 0,

0 ; Otherwise.

(1)

The cumulative distribution function (CDF) of the two parameter Weibull
distribution with shape parameter β (known) and scale parameter θ is
given by equation (2) below:

F (x;β, θ) = P (X ≤ x) =















1− e
−
xβ

θ ; x ≥ 0, β > 0, θ > 0,

0 ; Otherwise.

(2)

For X has two parameter Weibull distribution with shape parameter β

(known) and scale parameter θ, that is X ∼ Weibull(β, θ
1
β ), we have:

(i)

µ = E(X) = θ
1
βΓ

(

1

β
+ 1

)

(3)

(ii)

σ2 = V ar(X) = θ
2
β

(

Γ

(

2

β
+ 1

)

−
(

Γ

(

1

β
+ 1

))2
)

(4)
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(iii)

σ=SD(X)=
√

V ar(X)=

√

√

√

√θ
2
β

(

Γ

(

2

β
+1

)

−
(

Γ

(

1

β
+1

))2
)

= θ
1
β

√

√

√

√

(

Γ

(

2

β
+ 1

)

−
(

Γ

(

1

β
+ 1

))2
)

(5)

(iv) The theoretical coefficient of variation (γ), which is a useful indica-
tor, is obtained as:

γ =
σ

µ
=

θ
1
β

√

(

Γ
(

2
β + 1

)

−
(

Γ
(

1
β + 1

))2
)

θ
1
β Γ
(

1
β + 1

)

=

√

(

Γ
(

2
β + 1

)

−
(

Γ
(

1
β + 1

))2
)

Γ
(

1
β + 1

) (6)

(C2) Let χ2
(α
2
,2n) and χ2

(1−α
2
,2n), respectively, be the (α2 )

th and (1 − α
2 )

th per-

centiles points (quantiles) of the chi-square distribution with 2n degrees
of freedom where n > 0.

(C3) Let Zα
2
and Z1−α

2
, respectively, be the (α2 )

th and (1 − α
2 )

th percentiles
points (quantiles) of the standard normal distribution, Z ∼ N(0, 1),
which satisfy the following relation: P (|Z| < Z1−α

2
) = P (−Z1−α

2
< Z <

Z1−α
2
) = P (Zα

2
< Z < Z1−α

2
) = 1− α.

2.3. The pivotal quantity derivation for the exact and approximate
methods

In this section, we will derive the pivotal quantities for the exact and approxi-
mate confidence interval methods considered in this paper.

Definition 3. If Q = q(X1,X2, . . . ,Xn; θ) is a random variable that is a
function only of X1,X2, . . . ,Xn and θ, then Q is called a pivotal quantity if its
probability distribution does not depend on θ or any other unknown parameter
(see [25], page 363).
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2.3.1. The pivotal quantity derivation for the exact method

In this section, we will derive the pivotal quantity that will be used later to
construct the exact (1−α)100% confidence interval (CI) for the scale parameter
(θ) of the two parameters Weibull distribution with shape parameter β (known)

and scale parameter θ, that is Weibull(β, θ
1
β ).

Definition 4. If Xi ∼ f(xi; θ) and if F (x; θ) is the cumulative distribution
function (CDF) of Xi , then 1−F (xi; θ) ∼ Uniform(θ, 1), and consequently for
a random sample of size n; X1,X2, . . . ,Xn; it follows that the pivotal quantity:

Q = q(X1,X2, . . . ,Xn; θ) = −2

n
∑

i=1

ln[1− F (xi; θ)] ∼ χ2
(2n) (7)

(see [25], page 366).

Lemma 2.1. Let X1,X2, . . . ,Xn be a collection of independent and iden-
tically distributed random variables from a Weibull distribution with shape

parameter β (known) and scale parameter θ, that is Xi ∼ Weibull(β, θ
1
β ),

and if F (x;β, θ) = 1 − e−xβ/θ is the cumulative distribution function (CDF)
of Xi, then the pivotal quantity is given by Q = q(X1,X2, . . . ,Xn;β, θ) =
2
θ

∑n
i=1 X

β
i ∼ χ2

(2n).

Proof. To prove this, we use Definition 4 as follows:

Q = q(X1,X2, . . . ,Xn;β, θ) = −2
n
∑

i=1

ln[1− F (Xi;β, θ)]

= −2
n
∑

i=1

ln
[

1−
(

1− e−Xβ
i /θ
)]

= −2
n
∑

i=1

ln e−Xβ
i /θ

= −2
n
∑

i=1

−X
β
i

θ
=

2

θ

n
∑

i=1

X
β
i ∼ χ2

(2n). (8)

2.3.2. The pivotal quantity derivation for the approximate method

In this section, we will derive the pivotal quantity based on the suggestions given
by [2] and [26]. This pivotal quantity will be used in this study to construct
the proposed (1 − α)100% approximate confidence interval (CI) for the scale
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parameter (θ) of the two parameters Weibull distribution with shape parameter

β (known) and scale parameter θ, that is Weibull(β, θ
1
β ). Let X be a random

variable from a gamma distribution with the shape and scale parameters are
β (known) and θ, respectively, that is X ∼ Gamma(β, θ). The probability
density function (pdf) of the random variable X is given by equation (9) below:

f(x;β, θ) =



















1

θβΓ(β)
xβ−1 e

−
x

θ ; x > 0, β > 0, θ > 0,

0 ; Otherwise,

(9)

where Γ(x) = The gamma function =
∫∞
0 tx−1e−tdt. When the shape param-

eter β = 1, the gamma distribution reduces to the one parameter exponential
distribution with a scale parameter θ, that is X ∼ Exp(θ). According to [2]
when X follows an exponential distribution with mean θ, that is X ∼ Exp(θ),

the power transformation X
1
β has a Weibull distribution with shape parameter

β (known) and scale parameter θ. That is,

X∗ = X
1
β ∼ Weibull(β, θ

1
β ). (10)

According to [26], the use of β = 3.6 makes a good approximation to a
normal curve, then X∗ = X1/3.6 is approximately normally distributed with
mean, variance and standard deviation that can be given as follows:

µX∗ = E(X∗) = E(X
1
β ) = θ

1
βΓ(1 +

1

β
)

= θ
1

3.6Γ(1 +
1

3.6
) = θ

1
3.6Γ

(

4.6

3.6

)

= 0.90111 θ
1

3.6 , (11)

σ2
X∗ = V ar(X∗) = V ar(X

1
β ) = θ

2
β

[

Γ

(

1 +
2

β

)

−
(

Γ

(

1 +
1

β

))2
]

= θ
2

3.6

[

Γ

(

1 +
2

3.6

)

−
(

Γ

(

1 +
1

3.6

))2
]

= θ
2

3.6

[

Γ

(

5.6

3.6

)

−
(

Γ

(

4.6

3.6

))2
]

= θ
2

3.6

[

0.88929 − (0.90111)2
]

= 0.07729 θ
2

3.6 , (12)

σX∗ = SD(X∗) =
√

σ2
X∗ =

√

0.07729 θ
2
3.6 = 0.27801 θ

1
3.6 , (13)
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that is,

X∗ = X
1

3.6 ∼ N
(

0.90111 θ
1

3.6 , 0.07729 θ
2
3.6

)

, (14)

approximately as suggested by [26], and therefore the sampling distribution of
the sample mean (X

∗
) for the power transformed data which given as follows:

X
∗
=

∑n
i=1X

∗
i

n

=

(

X∗
1 = X

1/3.6
1

)

+
(

X∗
2 = X

1/3.6
2

)

+ · · · +
(

X∗
n = X

1/3.6
n

)

n
, (15)

will be approximately normally distributed with mean, variance and standard
deviation that can be given as follows:

µX
∗ = E(X

∗
) = µX∗ = E(X

1
β ) = θ

1
βΓ(1 +

1

β
) = 0.90111 θ

1
3.6 , (16)

σ2
X

∗ = V ar(X
∗
) =

σ2
X∗

n
=

0.07729 θ
2

3.6

n
, (17)

σX∗ = SD(X
∗
) =

√

σ2
X

∗ =
σX∗√
n

=
0.27801 θ

1
3.6√

n
, (18)

that is,

X
∗
=

∑n
i=1X

∗
i

n
∼ N

(

0.90111 θ
1
3.6 ,

0.07729 θ
2

3.6

n

)

. (19)

Based on the above results, we can modify the result of the central limit
theorem regarding the sampling distribution of the sample mean X

∗
for the

quantity Z =
X − µX

σX
∼ N(0, 1) using the suggested power transformation.

The modified Z∗ using the power transformation X∗ = X1/3.6 is given as fol-
lows:

Z∗ =
X

∗ − µX
∗

σX∗
=

X
∗ − 0.90111 θ

1
3.6

0.27801 θ
1
3.6√

n

=

√
n
(

X
∗ − 0.90111 θ

1
3.6

)

0.27801 θ
1
3.6

∼ N(0, 1). (20)

In this study, the Z∗ will be the pivotal quantity that will be used in our
proposed method to construct the proposed (1−α)100% approximate confidence
interval (CI) for the for the scale parameter (θ) of the two parameters Weibull
distribution with shape parameter β (known) and scale parameter θ.
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3. The confidence intervals for the scale parameter of the Weibull
distribution

In this section, for 0 < α < 1, the following three methods of (1−α)100% con-
fidence interval are studied for the efficiency comparisons. They are the three
confidence interval methods for the scale parameter (θ) of the two parameters
Weibull distribution with shape parameter β (known) and scale parameter θ,
namely, the exact method, the asymptotic method and the normal approxima-
tion confidence interval method.

3.1. The exact confidence interval for the scale parameter of the
Weibull distribution

In this section, we will obtain the (1 − α)100% exact confidence interval for
the scale parameter (θ) of the two parameters Weibull distribution with shape
parameter β (known) and scale parameter θ.

Lemma 3.1. Let X1,X2, . . . ,Xn be a collection of independent and iden-
tically distributed random variables from a Weibull distribution with shape

parameter β (known) and scale parameter θ, that is Xi ∼ Weibull(β, θ
1
β ), then

by using the pivotal quantity Q = q(X1,X2, . . . ,Xn;β, θ) =
2
θ

∑n
i=1X

β
i ∼ χ2

(2n),

the (1−α)100% exact confidence interval for the scale parameter (θ) of the two
parameters Weibull distribution with shape parameter β (known) and scale

parameter θ will be given by CIExact =

(

2
∑n

i=1 X
β
i

χ2
(1−α/2,2n)

,
2
∑n

i=1 X
β
i

χ2
(α/2,2n)

)

.

Proof. To prove this, we need to consider the significance level α based on
the relation given in condition (C2) where χ2

(α/2,2n) and χ2
(1−α/2,2n) are hold

by this condition, then the (1− α)100% exact confidence interval for the scale
parameter (θ) of the two parameters Weibull distribution with shape parameter
β (known) and scale parameter θ can be derived as follows:

P
(

χ2
(α/2,2n) < Q < χ2

(1−α/2,2n)

)

= 1− α,

P

(

χ2
(α/2,2n) <

2

θ

n
∑

i=1

X
β
i < χ2

(1−α/2,2n)

)

= 1− α,

P

(

χ2
(α/2,2n)

2
∑n

i=1 X
β
i

<
1

θ
<

χ2
(1−α/2,2n)

2
∑n

i=1X
β
i

)

= 1− α,
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P

(

2
∑n

i=1 X
β
i

χ2
(1−α/2,2n)

< θ <
2
∑n

i=1X
β
i

χ2
(α/2,2n)

)

= 1− α. (21)

Hence, the (1 − α)100% exact confidence interval for the scale parameter

(θ) is given by CIExact =

(

2
∑n

i=1 X
β
i

χ2
(1−α/2,2n)

,
2
∑n

i=1 X
β
i

χ2
(α/2,2n)

)

.

3.2. The asymptotic confidence interval for the scale parameter of
the Weibull distribution

An asymptotic confidence interval is valid only for a sufficiently large sample
size (n). This confidence interval is based on a pivotal quantity given by reduced

normal random variable Z = θ̂−θ
σ
θ̂

∼ N(0, 1) as n → ∞ where θ̂ is the maximum

likelihood estimator (MLE) for the scale parameter (θ) and σθ̂ is the standard

error of θ̂. Therefore we need to derive both θ̂ and σθ̂.

Lemma 3.2. Let X1,X2, . . . ,Xn be a collection of independent and iden-
tically distributed random variables from a Weibull distribution with shape

parameter β (known) and scale parameter θ, that is Xi ∼ Weibull(β, θ
1
β ),

then the maximum likelihood estimator (MLE) of the scale parameter (θ) is

θ̂ =
∑n

i=1 X
β
i

n .

Proof.

f(x;β, θ) =



















β

θ
xβ−1 e

−
xβ

θ ; x > 0, β > 0, θ > 0,

0 ; Otherwise,

L(β, θ) =

n
∏

i=1

f(xi;β, θ)

=

n
∏

i=1

β

θ
x
β−1
i e

−
x
β
i

θ =

(

β

θ

)n n
∏

i=1

x
β−1
i e

−

∑n
i x

β
i

θ ,

lnL(β, θ) = ln

(

β

θ

)n n
∏

i=1

x
β−1
i e

−

∑n
i x

β
i

θ
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= n lnβ − n ln θ + (β − 1)
n
∑

i=1

lnxi −
∑n

i x
β
i

θ
,

d lnL(β, θ)

dθ
= 0 → −n

θ
+

∑n
i x

β
i

θ2
= 0,

−nθ +
∑n

i x
β
i

θ2
= 0 → −nθ +

n
∑

i

x
β
i = 0,

θ̂ =

∑n
i=1 x

β
i

n
. (22)

Lemma 3.3. Let X1,X2, . . . ,Xn be a collection of independent and iden-
tically distributed random variables from a Weibull distribution with shape

parameter β (known) and scale parameter θ, that is Xi ∼ Weibull(β, θ
1
β ),

then the maximum likelihood estimator (MLE) of the scale parameter (θ) is

θ̂ =
∑n

i=1 X
β
i

n , then the standard error of θ̂ is σθ̂ =
θ√
n
.

Proof. To prove that, we need first to find the distribution for the maximum
likelihood estimator (MLE) θ̂ by using the transformation method as follows:

f(x;β, θ) =



















β

θ
xβ−1 e

−
xβ

θ ; x > 0, β > 0, θ > 0,

0 ; Otherwise.

Let Y = Xβ defines a one-to-one transformation implies that the inverse
transformation is w(y) = x = y1/β and therefore the derivative (usually called

the Jacobian) is J = w′(y) = d
dyw(y) =

dx
dy = 1

β y
1
β
−1

is continuous and nonzero
on B = {y : y > 0} then the probability density function (pdf) of the random
variable Y = Xβ by using the transformation method will be derived as follows:

f(y) = f (w(y))

∣

∣

∣

∣

d

dy
w(y)

∣

∣

∣

∣

, y ∈ B,

f(y) = f
(

y
1
β

)

∣

∣

∣

∣

1

β
y

1
β
−1

∣

∣

∣

∣

, y > 0,

f(y) =
β

θ
y

β−1
β e

−
y

θ
1

β
y

1
β
−1

, y > 0,
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f(y) =
1

θ
e
−
y

θ , y > 0, (23)

that is, Y = Xβ ∼ Exp(θ), then we can use the moment generating function
(mgf) properties for Y = Xβ to find the standard error of θ̂ as follows:

MY (t) = E(etY ) =

∫ ∞

−∞
etyf(y)dy =

1

1− θt
= (1− θt)−1, (24)

but θ̂ =
∑n

i=1 X
β
i

n =
∑n

i=1 yi
n = y and therefore the moment generating function

(mgf) for the maximum likelihood estimator (MLE) θ̂ can be derived as follows:

Mθ̂(t) = MY (t) = M∑n
i=1

Yi
n

(t)

=
n
∏

i=1

MYi

(

t

n

)

=

(

MY

(

t

n

))n

=

(

(

1− θt

n

)−1
)n

=

((

1− θt

n

))−n

, (25)

then

E(θ̂) = M ′
θ̂
(0) = θ

(

1− θt

n

)−n−1

|t=0 = θ, (26)

E(θ̂2) = M ′′
θ̂
(0) =

n+ 1

n
θ2
(

1− θt

n

)−n−2

|t=0

=
n+ 1

n
θ2 =

(

1 +
1

n

)

θ2, (27)

V ar(θ̂) = σ2
θ̂
= E(θ̂2)−

(

E(θ̂)
)2

=

(

1 +
1

n

)

θ2 − θ2 =
θ2

n
, (28)

and therefore the standard error of θ̂ is given as follows:

σθ̂ =
√

σ2
θ̂
=

√

θ2

n
=

θ√
n
. (29)

Lemma 3.4. Let X1,X2, . . . ,Xn be a collection of independent and iden-
tically distributed random variables from a Weibull distribution with shape pa-

rameter β (known) and scale parameter θ, that is Xi ∼ Weibull(β, θ
1
β ). If the

maximum likelihood estimator (MLE) of the scale parameter (θ) is θ̂ =
∑n

i=1 X
β
i

n

and the standard error of θ̂ is σθ̂ =
θ√
n
, then by using the pivotal quantity (or
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z-transform) Z = θ̂−θ
σ
θ̂

=

∑n
i=1 X

β
i

n
−θ

θ√
n

∼ N(0, 1) as n → ∞, the (1 − α)100%

asymptotic (approximate or large sample) confidence interval for the scale pa-
rameter (θ) of the two parameters Weibull distribution with shape parameter β

(known) and scale parameter θ will be CIAsymptotic =

( ∑n
i=1 X

β
i

n+
√
nZ1−α

2

,
∑n

i=1 X
β
i

n+
√
nZα

2

)

.

Proof. To prove this, we need to consider the significance level α based
on the relation given in condition (C3) where Zα

2
and Z1−α

2
are hold by this

condition, then the (1 − α)100% asymptotic confidence interval for the scale
parameter (θ) of the two parameters Weibull distribution with shape parameter
β (known) and scale parameter θ can be derived as follows:

P (Zα
2
< Z < Z1−α

2
) = 1− α,

P



Zα
2
<

∑n
i=1 X

β
i

n − θ
θ√
n

< Z1−α
2



 = 1− α,

P






Zα

2
<

∑n
i=1 X

β
i√

n
−√

nθ

θ
< Z1−α

2






= 1− α,

P

(

Zα
2
<

∑n
i=1X

β
i

θ
√
n

−
√
n < Z1−α

2

)

= 1− α,

P

(

√
n+ Zα

2
<

∑n
i=1X

β
i

θ
√
n

<
√
n+ Z1−α

2

)

= 1− α,

P

(

n+
√
nZα

2
∑n

i=1X
β
i

<
1

θ
<

n+
√
nZ1−α

2
∑n

i=1X
β
i

)

= 1− α,

P

(

∑n
i=1X

β
i

n+
√
nZ1−α

2

< θ <

∑n
i=1X

β
i

n+
√
nZα

2

)

= 1− α. (30)

Hence, the (1−α)100% asymptotic confidence interval for the scale param-

eter (θ) is CIAsymptotic =

( ∑n
i=1 X

β
i

n+
√
nZ1−α

2

,
∑n

i=1 X
β
i

n+
√
nZα

2

)

.
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3.3. The approximate confidence interval for the scale parameter of
Weibull distribution

In this section, the approximate (1 − α)100% confidence interval for the scale
parameter (θ) of the two parameters Weibull distribution with shape parameter
β (known) and scale parameter θ based on the pivotal quantity (Z∗) given in
equation (20) is constructed. We will refer to our proposed confidence interval
by CIProposed. The proposed (1 − α)100% approximate confidence interval for
the scale parameter (θ) of the two parameters Weibull distribution with shape
parameter β (known) and scale parameter θ is stated as follows:

Step 1: Let X1,X2, . . . ,Xn be a random sample of size n hold in condition (C1).

Step 2: : Calculate X∗ = X1/3.6 for the random sample X1,X2, . . . ,Xn to get the

new random sample X∗
1 ,X

∗
2 , . . . ,X

∗
n, where X∗

1 = X
1/3.6
1 ,X∗

2 = X
1/3.6
2 ,

. . . ,X∗
n = X

1/3.6
n .

Step 3: Calculate the sample mean (X∗) for the transformed data in Step 2 as
follows:

X
∗
=

∑n
i=1X

∗
i

n

=

(

X∗
1 = X

1/3.6
1

)

+
(

X∗
2 = X

1/3.6
2

)

+ · · ·+
(

X∗
n = X

1/3.6
n

)

n
.

Step 4: Let Zα
2
and Z1−α

2
hold in condition (C3).

Step 5: Consider the pivotal quantity Z∗ =

√
n
(

X
∗ − 0.90111 θ

1
3.6

)

0.27801 θ
1

3.6

which was

derived in equation (20) and the significance level α, then based on the
relation given in condition (C3), the proposed (1−α)100% confidence in-
terval for the scale parameter (θ) of the two parameters Weibull distribu-
tion with shape parameter β (known) and scale parameter θ (CIProposed)
will be derived as follows:

P (Zα
2
< Z∗ < Z1−α

2
) = 1− α,

P



Zα
2
<

√
n
(

X
∗ − 0.90111 θ

1
3.6

)

0.27801 θ
1

3.6

< Z1−α
2



 = 1− α,
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P

(

Zα
2
<

√
n

[

X
∗

0.27801 θ
1

3.6

− 3.24129

]

< Z1−α
2

)

= 1− α,

P

(

Zα
2√
n
<

[

X
∗

0.27801 θ
1
3.6

− 3.24129

]

<
Z1−α

2√
n

)

= 1− α,

P

(

Zα
2√
n
+ 3.24129<

[

X
∗

0.27801 θ
1

3.6

]

<
Z1−α

2√
n

+ 3.24129

)

=1− α,

P









X
∗

(

Z1−α
2√

n
+ 3.24129

)

(0.27801)

< θ
1

3.6

<
X

∗
(

Zα
2√
n
+ 3.24129

)

(0.27801)









= 1− α,

P









X
∗

(

(0.27801)Z1− α
2√

n
+ 0.90111

) < θ
1

3.6

<
X

∗
(

(0.27801)Zα
2√

n
+ 0.90111

)









= 1− α,

P

















X
∗

(

(0.27801)Z1− α
2√

n
+ 0.90111

)









3.6

< θ

<









X
∗

(

(0.27801)Zα
2√

n
+ 0.90111

)









3.6







= 1− α.

Hence, the proposed (1−α)100% approximate confidence interval for the
scale parameter (θ) of the two parameters Weibull distribution with shape
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parameter β (known) and scale parameter θ (CIProposed) is obtained in
equation (31),

CIProposed =

















X
∗

(

(0.27801)Z1− α
2√

n
+ 0.90111

)









3.6

,









X
∗

(

(0.27801)Zα
2√

n
+ 0.90111

)









3.6







, (31)

where Zα
2
and Z1−α

2
hold in condition (C3). Let

k1 =

(

(0.27801)Z1−α
2√

n
+ 0.90111

)

and

k2 =

(

(0.27801)Zα
2√

n
+ 0.90111

)

be the two constants, then equation (31) can be simplified in the form of
the following equation:

CIProposed =





[

X
∗

k1

]3.6

,

[

X
∗

k2

]3.6


 . (32)

Now, the constants k1 and k2 are required for the most common confidence
interval used in real applications, i.e., the confidence level of 95% (α = 0.05).
Hence, the constants k1 and k2 for sample sizes not greater than 100 are pro-
vided in Table 1.

4. The simulation study and results

In this section, in order to compare the efficiencies of the three methods for 95%
confidence intervals of the scale parameter θ for Weibull distribution, an exten-
sive Monte-Carlo simulation study was conducted by using SAS version 9.4
programming to examine the coverage probabilities (CP) and average widths
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Table 1: The values of k1 and k2 for confidence level (1−α)100% =
95%

n k1 k2 n k1 k2 n k1 k2

2 1.28641 0.51581 35 0.99322 0.80901 68 0.96719 0.83503

3 1.21571 0.58651 36 0.99193 0.81029 69 0.96671 0.83551

4 1.17356 0.62866 37 0.99069 0.81153 70 0.96624 0.83598

5 1.14480 0.65742 38 0.98950 0.81272 71 0.96578 0.83644

6 1.12356 0.67866 39 0.98836 0.81386 72 0.96533 0.83689

7 1.10706 0.69516 40 0.98727 0.81495 73 0.96489 0.83733

8 1.09376 0.70846 41 0.98621 0.81601 74 0.96445 0.83777

9 1.08274 0.71948 42 0.98519 0.81703 75 0.96403 0.83819

10 1.07342 0.72880 43 0.98421 0.81801 76 0.96361 0.83861

11 1.06540 0.73682 44 0.98326 0.81896 77 0.96321 0.83901

12 1.05841 0.74381 45 0.98234 0.81988 78 0.96281 0.83941

13 1.05224 0.74998 46 0.98145 0.82077 79 0.96242 0.83980

14 1.04674 0.75548 47 0.98059 0.82163 80 0.96203 0.84019

15 1.04180 0.76042 48 0.97976 0.82246 81 0.96165 0.84057

16 1.03733 0.76489 49 0.97895 0.82327 82 0.96128 0.84094

17 1.03327 0.76895 50 0.97817 0.82405 83 0.96092 0.84130

18 1.02954 0.77268 51 0.97741 0.82481 84 0.96056 0.84166

19 1.02612 0.77610 52 0.97667 0.82555 85 0.96021 0.84201

20 1.02295 0.77927 53 0.97596 0.82626 86 0.95987 0.84235

21 1.02002 0.78220 54 0.97526 0.82696 87 0.95953 0.84269

22 1.01728 0.78494 55 0.97458 0.82764 88 0.95920 0.84302

23 1.01473 0.78749 56 0.97393 0.82830 89 0.95887 0.84335

24 1.01234 0.78988 57 0.97328 0.82897 90 0.95855 0.84367

25 1.01009 0.79213 58 0.97266 0.82956 91 0.95823 0.84399

26 1.00797 0.79425 59 0.97205 0.83017 92 0.95792 0.84430

27 1.00598 0.79624 60 0.97146 0.83076 93 0.95761 0.84461

28 1.00409 0.79813 61 0.97088 0.83134 94 0.95731 0.84491

29 1.00230 0.79993 62 0.97031 0.83191 95 0.95702 0.84520

30 1.00059 0.80163 63 0.96976 0.83246 96 0.95672 0.84550

31 0.99898 0.80324 64 0.96922 0.83300 97 0.95644 0.84578

32 0.99744 0.80478 65 0.96870 0.83352 98 0.95615 0.84607

33 0.99596 0.80626 66 0.96818 0.83404 99 0.95587 0.84635

34 0.99456 0.80766 67 0.96768 0.83454 100 0.95560 0.84662
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(AW) of the three confidence intervals. Twenty-four populations of Weibull
distribution with shape parameter (β = 1.0, 1.5, 3.5, 10.0) and scale parameter
(θ = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0) were each generated of the size N = 100,000.
For each population, the sample sizes of n = 5, 10, 20, 40, 50 were randomly
generated 50,000 times. For each set of samples, the common 95% confidence
intervals of parameter θ were constructed for the three methods. The cover-
age probability (CP) and the average width (AW) are obtained by using the
following two formulas:

CP =
#(L ≤ θ ≤ U)

50, 000
,

AW =

∑50,000
i=1 (Ui − Li)

50, 000
. (33)

The simulation results are shown in Table 2 to Table 7. For situations of
a scale parameter θ equals 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and a shape parameter β
equals 1, the results show that the coverage probabilities of the three methods
close to the nominal level (0.95) and the average widths of exact and Proposed
methods tend to be no difference for almost all sample sizes. In addition, the
average width of Asymptotic method is wider than those of exact and Proposed
methods for a small sample size (n = 5, 10), but the average widths of the three
methods tend to be no difference for the larger sample sizes (n > 10) for these
situations. It also shows that the average widths of the three methods tend to
decrease when the sample size increases for all the scale and shape parameters.

For situations of a scale parameter θ equals 1.5 and a shape parameter β

equals 1.5, 3.5, 10.0 the results show that the coverage probabilities of exact and
asymptotic methods close to the nominal level (0.95), whereas this of Proposed
method closes to one and the average widths of exact and Proposed methods
tend to be no difference for all sample sizes.

For the cases of a scale parameter θ equals 2.0, 2.5, 3.0, 3.5, 4.0 and a shape
parameter β equals 1.5, 3.5, 10.0 the results show that the coverage probabilities
of exact and asymptotic methods close to the nominal level (0.95), whereas this
of Proposed method closes to one for a small sample size and it tends to decrease
when a sample size increases. However, Proposed method tends to have the
shortest average width for all sample sizes in these cases. Especially, for a
small sample size (n = 5), it is found that the coverage probability of Proposed
method close to one and it tends to give the shortest average width when
the large scale and shape parameters are considered. For all scale and shape
parameters, the results show that the average width of asymptotic method is
more wider than those of exact and Proposed methods for a small sample size
(n = 5).
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Table 2: The coverage probability (CP) and average width (AW)
of 95% CIs for the scale parameter (θ) of a two parameters Weibull
distribution when θ = 1.5

n β

Confidence Interval Methods
Exact Asymptotic Proposed

CP AW CP AW CP AW

5

1.0

0.9504 3.893 0.9567 11.366 0.9523 4.395
10 0.9483 2.256 0.9535 3.027 0.9485 2.531
20 0.9496 1.445 0.9538 1.628 0.9505 1.616
40 0.9487 0.974 0.9500 1.029 0.9498 1.085
50 0.9497 0.864 0.9503 0.902 0.9496 0.961

5

1.5

0.9494 3.892 0.9554 11.363 0.9952 3.994
10 0.9496 2.255 0.9544 3.025 0.9950 2.349
20 0.9500 1.446 0.9527 1.629 0.9940 1.517
40 0.9503 0.975 0.9515 1.029 0.9916 1.025
50 0.9502 0.864 0.9514 0.901 0.9900 0.909

5

3.5

0.9506 3.896 0.9552 11.375 1.0000 3.826
10 0.9508 2.247 0.9562 3.016 1.0000 2.285
20 0.9495 1.445 0.9527 1.628 1.0000 1.488
40 0.9507 0.975 0.9520 1.029 1.0000 1.011
50 0.9518 0.864 0.9528 0.902 1.0000 0.897

5

10

0.9495 3.885 0.9564 11.342 1.0000 3.857
10 0.9501 2.251 0.9556 3.020 1.0000 2.315
20 0.9490 1.446 0.9505 1.629 1.0000 1.510
40 0.9485 0.975 0.9506 1.029 1.0000 1.026
50 0.9517 0.863 0.9519 0.901 1.0000 0.911
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Table 3: The coverage probability (CP) and average width (AW)
of 95% CIs for the scale parameter (θ) of a two parameters Weibull
distribution when θ = 2.0

n β

Confidence Interval Methods
Exact Asymptotic Proposed

CP AW CP AW CP AW

5

1.0

0.9496 5.205 0.9547 15.196 0.9483 5.883
10 0.9499 3.006 0.9544 4.034 0.9487 3.378
20 0.9515 1.927 0.9537 2.171 0.9518 2.152
40 0.9499 1.301 0.9504 1.373 0.9487 1.448
50 0.9504 1.152 0.9517 1.202 0.9503 1.282

5

1.5

0.9532 5.182 0.9567 15.128 0.9927 4.833
10 0.9511 2.999 0.9567 4.024 0.9880 2.842
20 0.9518 1.926 0.9546 2.170 0.9796 1.836
40 0.9517 1.299 0.9540 1.372 0.9563 1.242
50 0.9508 1.152 0.9516 1.202 0.9408 1.101

5

3.5

0.9493 5.175 0.9570 15.106 1.0000 4.150
10 0.9514 2.999 0.9556 4.024 1.0000 2.481
20 0.9500 1.926 0.9531 2.170 0.9986 1.616
40 0.9494 1.299 0.9505 1.372 0.9494 1.097
50 0.9494 1.151 0.9508 1.201 0.8603 0.973

5

10

0.9506 5.186 0.9563 15.139 1.0000 3.971
10 0.9493 3.006 0.9543 4.033 1.0000 2.382
20 0.9503 1.929 0.9537 2.173 1.0000 1.554
40 0.9500 1.300 0.9521 1.373 0.9961 1.056
50 0.9511 1.152 0.9512 1.202 0.8347 0.937
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Table 4: The coverage probability (CP) and average width (AW)
of 95% CIs for the scale parameter (θ) of a two parameters Weibull
distribution when θ = 2.5

n β

Confidence Interval Methods
Exact Asymptotic Proposed

CP AW CP AW CP AW

5

1.0

0.9508 6.486 0.9569 18.936 0.9516 7.321
10 0.9499 3.754 0.9545 5.037 0.9488 4.216
20 0.9511 2.406 0.9533 2.711 0.9484 2.690
40 0.9499 1.623 0.9519 1.714 0.9497 1.807
50 0.9494 1.441 0.9504 1.504 0.9491 1.603

5

1.5

0.9491 6.468 0.9566 18.882 0.9879 5.607
10 0.9511 3.746 0.9554 5.027 0.9777 3.298
20 0.9515 2.406 0.9547 2.710 0.9514 2.130
40 0.9500 1.626 0.9513 1.717 0.8710 1.442
50 0.9516 1.440 0.9525 1.502 0.8162 1.277

5

3.5

0.9491 6.494 0.9562 18.958 0.9996 4.426
10 0.9504 3.753 0.9553 5.036 0.9962 2.646
20 0.9497 2.409 0.9522 2.714 0.8839 1.722
40 0.9490 1.626 0.9500 1.717 0.1166 1.170
50 0.9489 1.440 0.9505 1.502 0.0140 1.038

5

10

0.9493 6.478 0.9560 18.910 1.0000 4.059
10 0.9487 3.761 0.9532 5.047 1.0000 2.436
20 0.9509 2.411 0.9538 2.716 0.7439 1.590
40 0.9522 1.625 0.9523 1.716 0.0000 1.080
50 0.9495 1.438 0.9509 1.501 0.0000 0.958
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Table 5: The coverage probability (CP) and average width (AW)
of 95% CIs for the scale parameter (θ) of a two parameters Weibull
distribution when θ = 3.0

n β

Confidence Interval Methods
Exact Asymptotic Proposed

CP AW CP AW CP AW

5

1.0

0.9486 7.799 0.9559 22.768 0.9498 8.807
10 0.9505 4.500 0.9552 6.038 0.9500 5.053
20 0.9497 2.892 0.9519 3.258 0.9488 3.235
40 0.9507 1.950 0.9522 2.059 0.9500 2.172
50 0.9508 1.729 0.9495 1.804 0.9486 1.925

5

1.5

0.9500 7.759 0.9565 22.652 0.9827 6.322
10 0.9495 4.511 0.9548 6.053 0.9647 3.732
20 0.9503 2.888 0.9524 3.253 0.9100 2.405
40 0.9498 1.949 0.9505 2.058 0.7388 1.627
50 0.9515 1.728 0.9530 1.803 0.6394 1.442

5

3.5

0.9498 7.759 0.9565 22.652 0.9987 4.659
10 0.9505 4.506 0.9554 6.047 0.9595 2.787
20 0.9501 2.889 0.9531 3.254 0.3383 1.815
40 0.9494 1.951 0.9510 2.060 0.0001 1.232
50 0.9489 1.729 0.9500 1.804 0.0000 1.093

5

10

0.9509 7.761 0.9573 22.657 1.0000 4.134
10 0.9491 4.496 0.9558 6.033 0.9840 2.480
20 0.9500 2.892 0.9538 3.258 0.0000 1.619
40 0.9500 1.950 0.9516 2.059 0.0000 1.100
50 0.9499 1.726 0.9507 1.801 0.0000 0.976
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Table 6: The coverage probability (CP) and average width (AW)
of 95% CIs for the scale parameter (θ) of a two parameters Weibull
distribution when θ = 3.5

n β

Confidence Interval Methods
Exact Asymptotic Proposed

CP AW CP AW CP AW

5

1.0

0.9522 9.061 0.9579 26.453 0.9522 10.220
10 0.9521 5.257 0.9552 7.054 0.9498 5.912
20 0.9492 3.373 0.9523 3.800 0.9501 3.769
40 0.9510 2.271 0.9530 2.397 0.9499 2.528
50 0.9489 2.016 0.9500 2.103 0.9481 2.243

5

1.5

0.9505 9.094 0.9564 26.549 0.9793 7.036
10 0.9515 5.260 0.9566 7.058 0.9514 4.136
20 0.9508 3.374 0.9527 3.801 0.8564 2.668
40 0.9495 2.275 0.9519 2.401 0.5896 1.803
50 0.9487 2.016 0.9500 2.104 0.4560 1.599

5

3.5

0.9516 9.079 0.9572 26.506 0.9946 4.872
10 0.9498 5.251 0.9555 7.046 0.8107 2.912
20 0.9492 3.373 0.9512 3.799 0.0252 1.896
40 0.9506 2.276 0.9517 2.403 0.0000 1.288
50 0.9519 2.015 0.9531 2.102 0.0000 1.142

5

10

0.9497 9.110 0.9553 26.597 1.0000 4.202
10 0.9499 5.246 0.9546 7.040 0.1284 2.519
20 0.9508 3.379 0.9537 3.806 0.0000 1.644
40 0.9502 2.275 0.9520 2.402 0.0000 1.117
50 0.9499 2.016 0.9507 2.103 0.0000 0.991
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Table 7: The coverage probability (CP) and average width (AW)
of 95% CIs for the scale parameter (θ) of a two parameters Weibull
distribution when θ = 4.0

n β

Confidence Interval Methods
Exact Asymptotic Proposed

CP AW CP AW CP AW

5

1.0

0.9498 10.363 0.9564 30.254 0.9498 11.708
10 0.9507 5.997 0.9562 8.047 0.9511 6.737
20 0.9502 3.850 0.9536 4.337 0.9493 4.302
40 0.9499 2.599 0.9516 2.744 0.9498 2.897
50 0.9502 2.301 0.9517 2.401 0.9492 2.561

5

1.5

0.9498 10.381 0.9549 30.306 0.9723 7.691
10 0.9503 6.008 0.9548 8.061 0.9314 4.513
20 0.9496 3.856 0.9526 4.344 0.7925 2.916
40 0.9501 2.600 0.9517 2.744 0.4472 1.970
50 0.9497 2.305 0.9513 2.405 0.3007 1.748

5

3.5

0.9492 10.381 0.9554 30.307 0.9812 5.062
10 0.9496 6.016 0.9542 8.073 0.5227 3.026
20 0.9493 3.853 0.9527 4.341 0.0001 1.971
40 0.9510 2.598 0.9523 2.743 0.0000 1.337
50 0.9497 2.303 0.9505 2.403 0.0000 1.187

5

10

0.9511 10.361 0.9573 30.248 0.9984 4.255
10 0.9507 5.990 0.9555 8.038 0.0000 2.553
20 0.9510 3.859 0.9537 4.347 0.0000 1.666
40 0.9497 2.599 0.9508 2.744 0.0000 1.132
50 0.9506 2.303 0.9513 2.403 0.0000 1.005
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Table 8: The 95% CIs for the scale parameter (θ) of a Two Param-
eters Weibull Distribution for Urinary Tract Infection (UTIs) Data

Methods
Confidence Interval Limits

Lower Limit Upper Limit Width

Exact 0.64756 1.33246 0.68490

Asymptotic 0.66208 1.39998 0.73790

Proposed 0.86515 1.92180 1.05665

5. Real example: Urinary Tract Infection Data

In this section, a real-life example is given for the data from a healthcare depart-
ment to illustrate the application of the three methods of confidence intervals.
The data are collected from a large hospital to monitor urinary tract infections
(UTIs). The data represent the number of days in between the admission and
discharge of male patients. The frequency of patients having discharged from
hospital on being acquired the UTIs while in the hospital is mentioned to quickly
identify an increased infection rate. The similar data of UTIs were used by
[27], [28] and [29]. According to [29] the data follow a Weibull distribution with
shape parameter β = 2. The summary statistics for the data are given as fol-
lows: n = 30,

∑n=30
i=1 X

β
i = 26.9702,X

∗
= 0.961129, k1 = 1.00059, k2 = 0.80163.

The resulting 95% confidence intervals for the three confidence interval
methods and the corresponding confidence widths are given below in Table
8.

From Table 8, it is found that all the three methods for the 95% confidence
intervals of the scale parameter (θ) have the lower and upper limits between
0.64756 to 1.92180, that is, the scale parameter (θ) of a two parameters Weibull
distribution for urinary tract infections (UTIs) data seems to be not greater
than two with a shape parameter β = 2. In addition, exact method has the
shortest interval width. This conforms to the simulation study that the exact
confidence interval performs well efficiency when it compares to the asymptotic
and Proposed confidence intervals for the case of a small scale parameter and
shape parameter β = 2.

6. Concluding remarks

An exact, asymptotic and approximate (1−α)100% confidence intervals for the
scale parameter (θ) of a two parameter Weibull distribution for the case of the
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one sample problem using the pivotal-based approach are derived. A Monte
Carlo simulation study is performed to compare the efficiencies in terms of two
criteriathe coverage probabilities and average widths of confidence intervalsfor
the exact, asymptotic and approximate confidence intervals. It is found that
the coverage probabilities of the three confidence intervals are close to the nom-
inal level in cases of the shape parameter β equals 1 and all scale parameters θ
for all sample sizes. When a shape parameter β increases, the coverage prob-
abilities of the exact and asymptotic confidence intervals are also close to the
nominal level for all sample sizes, whereas the coverage probability of the ap-
proximate confidence interval closes to one for a small sample size and it tends
to decrease when a sample size increases. When considering the efficiency in
term of the average width, it is found that the average widths of the three
confidence intervals tend to be no difference in cases of the shape parameter
β equals 1 and all scale parameters θ for the large sample sizes. Moreover, in
case of the shape parameter β is greater than 1 (β = 1.5, 3.5, 10.0) and the
scale parameters θ is greater than 1.5 (θ = 2.0,2.5,3.0,3.5,4.0), the approximate
confidence interval tends to have the shortest average width for all sample sizes.
However, asymptotic confidence interval tends to perform poor efficiency for a
small sample size whatever the shape and scale parameters will be. Finally,
the approximate confidence interval is easy to compute and it tends to have
the coverage probability close to one and have the shortest average width for
a small sample size (n = 5) and almost all the shape and scale parameters,
therefore it can be recommended for the practitioners in these cases.
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