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Abstract: In this article, we introduce an implicit finite difference approx-
imation for one-dimensional porous medium equations using Quarter-Sweep
approach. We approximate the solutions of the nonlinear porous medium equa-
tions by the application of the Newton method and use the Gauss-Seidel itera-
tion. This yields a numerical method that reduces the computational complex-
ity when the spatial grid spaces are reduced. The numerical result shows that
the proposed method has a smaller number of iterations, a shorter computation
time and a good accuracy compared to Newton-Gauss-Seidel and Half-Sweep
Newton-Gauss-Seidel methods.
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1. Introduction

In the present article, we consider an implicit finite difference approximation us-
ing Quarter-Sweep approach for the one-dimensional porous medium equations
(1D PME) of the form,
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ou 0, n,ou

Fri %(U %)7 (1)

that is subject to the initial and boundary conditions as follows:

u(z,0) = fo(z), 0<x<1, (2)

U(O,t) = gO(t)> u(lvt) = gl(t)a 0<t<1, (3)

with rational numbers, C' and m.

The partial differential equation (1) arises, for example, in flow of incom-
pressible fluids, gas flow in porous media, nonlinear process of heat transfer
and image processing. Equation (1) itself represents a nonlinear diffusion pro-
cess. It has many interesting features and one of them is the finite propagation
induced by the degeneracy. When the initial condition u(xz,0) has compact
support, the solution will have a compact support for any time ¢t > t3. This
creates a free boundary between the regions where the solution u is nonzero
and where u vanishes (propagates at a finite speed for any time). Moreover,
one of the obvious differences between equation (1) and its closest variant, the
heat equation, is the heat equation can smooth out its initial solutions while
the solution of equation (1) can become non-smooth even in cases where it has
a smooth initial solution. For more details, see Vazquez [7].

Since the introduction of Quarter-Sweep approach by Othman and Abdullah
[10], it has been studied by few researchers which can be referred in Eng et al.
[5], Sunarto and Sulaiman [1], Suardi et al. [11], Aruchunan et al. [4], and
Nusi and Othman [12]. In contrast to these works, in the present article, we
attempt to apply the Quarter-Sweep into the formulation of finite difference
approximation for 1D PME. To approximate the solutions of 1D PME, we use
the combination of Newton method and Gauss-Seidel iteration which eventually
become a new iterative method that can be abbreviated as QSNGS method.

This article is outlined as follows. In Section 2, we present the formulation
of the implicit finite difference approximation equation using Quarter-Sweep
for equation (1). Then, we show the derivation of the Newton-Gauss-Seidel
method for equation (1) from the formulated approximation equation. Section
3 illustrates the numerical results from the implementation of QSNGS on some
examples of 1D PME problems. As a comparison, we selected the methods:
the Newton-Gauss-Seidel (NGS) and the Half-Sweep version of Newton-Gauss-
Seidel (HSNGS) from Chew [9]. Section 4 concludes the finding of the article.
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2. Methodology

In this section, we show the Quarter-Sweep finite difference approximation of
equation (1) and the Newton-Gauss-Seidel method for the approximate solu-
tion. To begin, we define the difference operators:

Ou _ Upn+1— Upn

= 4
5 - , (4)
@ _ Uptant1 — 2Up i1 + Up_ant (5)
02 (dh)? ’
Ou _ Uptan+1 = Up-ani1 (6)
Ox Sh '

We use the following spatial and temporal steps as follows: Let M and N be
natural numbers and h = ﬁ, k= %, xp = ph,p=0,..,M,t, =nk and t,;1 =
(n+1)k. The numerical solution at time level n and n+1 are denoted as U, ,, =
U(xp,ty) and Uppi1 = U(xp, tyy1) respectively. The corresponding solution
vectors can be denoted as Uy, = (Up p, .., Unr,n) and Upq1 = (Ug g1y - Unins1)-
To perform the discretization of equation (1) using equation (4 - 6), we find the
derivatives for each term in equation (1) and write it into

ou ™ o 0?u ™ 9 .

T 2 mu”™ (%) ) (7)
then we discretize equation (7) in order to form the Quarter-Sweep finite dif-
ference approximation of equation (1) and yields

fpnt1 = Upns1 — @Ay + 20y — aAz — BAy +28A5 — BAs — Up s (8)

where

Ck Ck
= T ﬁ—64h2,p 4,8,.,M — 8 M — 4,

— m _ m

m—1
Ay = mUp n+1Up+4 n41 o As =mU n+1Up+4 n+1Up 4n+1,

Ag =mU" L U> 4y and n=0,.,N —1.

We investigate the implementation of equation (8) on a solution domain of
equation (1) that contains M grid points. When equation (8) is applied to each
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of the grid points in the solution domain, it will result in a large-sized system
of nonlinear equations that has a form of

[ fan1(Ungr)
f8n4+1(Uns1)

: =0. 9)

-8 n+1(Unt1)
|41 (Ung1) ]

To solve the system of nonlinear equations (9), we derive the Newton-Gauss-
Seidel method which has been discussed in Ortega and Rheinboldt [8] and More
[6]. First, to derive the Newton method for a system of nonlinear equations, we
find the Jacobian matrix with dimension (M —4) x (M — 4) as follows,

8f4,n+1 6f4,n+1
U4 ny1 t OUpn—4 g1
. . (10)
OfM—4a,nt1 OfM—4,nt1
U4 n+1 T OUp—an+1

By denoting W, 1) = U, ((fbﬁ)) -U ((ﬁ)ﬂ) and ¢ as the number of the currently

executing iteration, we obtain the corresponding system of linear equations
Jn+1Wn+1 = _F(UnJrl)u (11)

where W,, 11 and F(U,1) are both column matrices with dimension (M —4) x 1.
Second, using equation (10), we separate the Jacobian matrix into three parts
as follows

Jn1 = Dpg1 + L1 + Viga, (12)

where D, 11 is the diagonal part, L, is the lower triangular part and V,, 1 is
the upper triangular part. The entries for the diagonal part are all nonzero. We
substitute equation (12) into equation (11) and rearrange it to get the iteration
form of QSNGS:

/ _ /
WY = Dy + L) (Ve W, = F(U11)), (13)

The implementation of the QSNGS can be outlined as follows.
Algorithm 1:

i. Set the initial vector U, 1 = 1.0000 and the tolerance error ¢ = 10710,

ii. Compute Jy41, Wy41 and F(Up41),
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—

iii. Iterate Eq. (11),

WD ©

iv. n+1 n+1‘ S &,
v. Compute Ur(fi:'ll) = Uff?_l + Wrgﬁll),
vi. Check whether | P(USY) = P, <,

vii. Display the outputs such as the number of iterations, the computation time
and the maximum absolute errors.

3. Numerical experiments

To study the performance of QSNGS method, we conduct a comparative anal-
ysis between the QSNGS and the other two tested methods, NGS and HSNGS.
The performance analysis is studied by using three selected 1D PME problems
and the criteria to be observed are the number of iterations ({,,4,), the com-
putation time (s) and the maximum absolute error (€,,4,). The number of
grid points M to be considered is 256, 512, 1024, 2048, and 4096. Below is the
following 1D PME problems and the exact solutions to be tested.

Example 1: See in Polyanin and Zaitsev [2]

ou 0, Ou

Example 2: See in Wazwaz [3]
du 9, 40u r+1

= _ = = . 1
ot 8x(u 83:)’ uz,?) 2v4—t (15)
Example 3: See in Wazwaz [3]
ou 10, 10u 1
Ou_10 13, . (16)
ot  20x u?Oox V0.7x — 0.1225¢ + 1.35

The numerical output from the implementation of Algorithm 1 is collected
and tabulated in Tables 1, 2 and 3 together with the numerical results from NGS
and HSNGS from Chew [9]. The overall finding from the numerical experiment
shows that QSNGS has successfully reduced the number of iterations and the
computation time in computing the numerical solution of 1D PME when it is
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compared to NGS and HSNGS. The accuracy of the QSNGS is also as good as
both NGS and HSNGS.

It can be said that by applying the Quarter-Sweep scheme in the formulation
of the finite difference approximation to 1D PME, the computational complexity
can be lowered in obtaining the solution of the nonlinear differential equation
like PME. The reason is the implementation by NGS method computes all grid
points in the solution domain. This causes the computational burden to be
higher especially when the distance between grid points become narrower. As
discussed in Chew [9], the combination of Half-Sweep with the finite difference
scheme has shown its capability in reducing the computational complexity of
the NGS by taking half of the total grid points. This paper, however, showed
that the computational complexity can be reduced even further with the use of
Quarter-Sweep that calculate only a quarter of all grid points in the solution
domain, see Figure 1.

This finding is supported by the number of arithmetic operations per itera-
tion as shown in Table 4. For instance, per iteration on a single point, QSNGS
uses 2 operations for PLUS/MINUS and 3 operations for MULTIPLY /DIVIDE.
Since the Quarter-Sweep scheme consider one-fourth of the grid points, thus
amount of PLUS /MINUS and MULTIPLY /DIVIDE becomes 2(% —1) and
3(4 — 1)) respectively.

4. Conclusion

Applied to the nonlinear one-dimensional porous medium equation, the Quarter-
Sweep finite difference scheme and Newton-Gauss-Seidel has shown the capabil-
ity in obtaining the numerical solutions with better efficiency. We have observed
that the numerical solution obtained by the proposed method has a smaller
number of iterations, a shorter computation time and a comparable accuracy
when it is compared to Newton-Gauss-Seidel and Half-Sweep Newton-Gauss-
Seidel.
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5. Appendices

Method Grid points to be considered
NGS t
A
h
16 . —4
n+ tk
n - - - L _‘ X
0 1 2 3 4 . M4 M3 M2 M1 M
HSNGS t
A
2h
n+1¢¢k . —4 Y
0 1 2 3 4 - M4 M3 M2 M1 M

QSNGS

t
A
‘ﬂll447L44474’
n+1 ¢k o
n . X
0 1 2 3 4

M4 M3 M2 M1 M

Figure 1: Comparison in terms of implementation by the three meth-
ods
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Table 1. Numerical result of Example 1

M Method o ax S Emax
256 NGS 48395 19.31 5.33E-07
HSNGS 13678 6.32 1.22E-07
QSNGS 3835 1.91 2.75E-08
512 NGS 169693 133.84 2.10E-06
HSNGS 48395 31.05 5.33E-07
QSNGS 13678 7.78 1.22E-07
1024 NGS 587031 919.22 7.62E-06
HSNGS 169693 244.23 2.10E-06
QSNGS 48395 44.79 5.33E-07
2048 NGS 1993096 6208.25 2.67E-05
HSNGS 587031 992.64 7.62E-06
QSNGS 169693 270.08 2.10E-06
4096 NGS 6612931 40998.73 9.66E-05
HSNGS 1993096 6697.98 2.67E-05
QSNGS 587031 2068.44 7.62E-06
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Table 2. Numerical result of Example 2

M  Method L nax S Emax
256 NGS 17308 10.88 8.39E-05
HSNGS 4824 3.23 8.39E-05
QSNGS 1345 1.43 8.39E-05
512 NGS 61658 76.91 8.40E-05
HSNGS 17308 22.16 8.39E-05
QSNGS 4824 4.86 8.39E-05
1024 NGS 218147 557.97 8.43E-05
HSNGS 61658 173.79 8.40E-05
QSNGS 17308 27.22 8.39E-05
2048 NGS 763998 3839.51 8.55E-05
HSNGS 218147 950.34 8.43E-05
QSNGS 61658 192.19 8.40E-05
4096 NGS 2630914 26497.28 8.99E-05
HSNGS 763998 4136.48 8.55E-05
QSNGS 218147 1194.31 8.43E-05

447
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Table 3. Numerical result of Example 3

M  Method L nax S Emax
256 NGS 24325 16.70 2.71E-06
HSNGS 7082 5.85 2.90E-06
QSNGS 2015 3.72 2.88E-06
512 NGS 81729 113.26 1.86E-06
HSNGS 24325 47.89 2.71E-06
QSNGS 7082 6.61 2.90E-06
1024 NGS 265698 767.23 3.33E-06

HSNGS 81729 321.39 1.86E-06
QSNGS 24325 51.35 2.71E-06
2048 NGS 882282 5164.64 1.66E-05
HSNGS 265698 1031.30 3.33E-06
QSNGS 81729 343.43 1.86E-06
4096 NGS 2853985 33726.52 6.10E-05
HSNGS 882282 5601.43 1.66E-05
QSNGS 265698 1772.49 3.33E-06
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Table 4. Arithmetic operations per iteration

Arithmetic operations per iteration

Method
SO b US/MINUS  MULTIPLY/DIVIDE
NGS 2(M-1) 3(M-1)
M M
HSNGS (—— ) (_— )
2(5-1 3(3-1
M M
SNGS (—— ) (—— )
Q 2(5-1 3(3-1
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