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Abstract: We consider a broad class of linear operator equations that includes
systems of ordinary differential equations, difference equations and fractional-
order ordinary differential equations. This class also includes operator exponen-
tials and powers, as well as eigenvalue problems and Fredholm integral equa-
tions. Many problems in engineering and the physical and natural sciences can
be described by such operator equations. We generalise the fundamental matrix
to a fundamental operator and provide a new explicit method for obtaining an
exact series solution to these types of operator equations, together with suf-
ficient conditions for convergence and error bounds. Illustrative examples are
also given.
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1. Introduction

Many problems in applied mathematics, especially in engineering and the physi-
cal and natural sciences, can be formulated as linear operator equations in some
appropriate space. To motivate the research questions in this article, a sampling
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of such problems is given as follows; more examples are given in Section 3.

1.1. Ordinary differential equations

An initial value problem (IVP) associated with a system of linear first-order
ordinary differential equations (ODEs) has the form

x′(t) = Ax(t), x(0) = x0, (1.1)

where t ≥ 0 typically represents continuous time, A is an n×n real or complex
matrix and x(t), x0 ∈ R

n. A system such as (1.1) arises either from modelling
or as a result of linearisation when investigating the stability of equilibrium
states of a system of nonlinear ODEs [1, 2]. It is well known that the unique
solution of (1.1) can be expressed as

x(t) = etAx0,

where etA is the matrix exponential defined by the series

etA =
∞
∑

j=0

tj

j!
Aj

and A0 = I is the n×n identity matrix. The matrix exponential is also known
as a fundamental matrix.

The calculation of the matrix exponential is not always straightforward as
it entails the summation of an infinite series. Putzer [10] gave an elementary
method for calculating the matrix exponential that avoids the use of the Jordan
canonical form but which requires only the solution of a recursive system of lin-
ear first-order ODEs. Putzer’s method is described as follows. Let λ1, λ2, . . . , λn

denote the eigenvalues of A. Define the n× n matrices P0, P1, . . . , Pn by

P0 = I, Pj = (A− λjI)Pj−1, 1 ≤ j ≤ n. (1.2)

Let the functions y1, y2, . . . , yn, each one depending on t, satisfy

y′1(t) = λ1y1(t), y1(0) = 1,

y′j+1(t) = λj+1yj+1(t) + yj(t), yj+1(0) = 0, 1 ≤ j ≤ n− 1.

Then a finite expansion of the matrix exponential is

etA =

n−1
∑

j=0

yj+1(t)Pj .
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1.2. Difference equations

When m ∈ N ∪ {0}, then the analogous IVP for a system of linear first-order
difference equations can be considered:

x(m+ 1) = Ax(m), x(0) = x0, (1.3)

where x(m), x0 ∈ R
n and A is an n × n real or complex invertible matrix.

Such systems also arise in biological applications when studying discrete-time
processes [3, 4]. The unique solution of (1.3) is

x(m) = Amx0,

where Am is the usual matrix power defined recursively by A0 = I and Am =
AAm−1 for m ≥ 1. Here, Am is a fundamental matrix.

Elaydi and Harris [5] adapted Putzer’s method to calculate the matrix power
as

Am =

n−1
∑

j=0

yj+1(m)Pj ,

where the n × n matrices P0, P1, . . . , Pn are defined as in (1.2) and the se-
quences y1, y2, . . . , yn, each one depending on m, satisfy the IVP

y1(m) = λ1y1(m), y1(0) = 1,

yj+1(m) = λj+1yj+1(m) + yj(m), yj+1(0) = 0, 1 ≤ j ≤ n− 1.

1.3. Fractional ordinary differential equations

The author introduced fractional matrix exponentials in [11], where the associ-
ated derivative is either a Caputo or a Riemann-Liouville fractional derivative.
Let us recall that for a suitable function f : (0,∞) → R and α > 0,

0D
−α
t f(t) =

1

Γ(α)

t
∫

0

(t− u)α−1f(u) du

is called the Riemann-Liouville fractional integral of f of order α. Let ⌈α⌉
denote the least integer greater than or equal to α. Then the Caputo and
Riemann-Liouville fractional derivatives of f of order α are

C
0 D

α
t f(t) = 0D

−(⌈α⌉−α)
t D⌈α⌉f(t), 0D

α
t f(t) = D⌈α⌉

0D
−(⌈α⌉−α)
t f(t),
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respectively, where D⌈α⌉ denotes an ordinary derivative. For a discussion of
the fractional calculus, see [7, 9] for instance and the list of references therein.
When the scalar f(t) is replaced by a matrix Φ(t), then the above definitions
can be applied component-wise.

The Caputo fractional matrix exponential was defined as

exp∗(tA;α) =

⌈α⌉−1
∑

k=0

tkAkEα,k+1(t
αAα),

where Eα,β (with α, β > 0) is the two-parameter Mittag-Leffler function. Note
that the roles of j and k are reversed here (see [11]). On the other hand, the
Riemann-Liouville fractional matrix exponential was defined as

exp(tA;α) =

⌈α⌉−1
∑

k=0

tα−⌈α⌉+kAkEα,α−⌈α⌉+k+1(t
αAα).

It follows that exp∗(tA; 1) = exp(tA; 1) = etA. The Caputo fractional matrix
exponential is the unique matrix function solution of the IVP

C
0 D

α
t Φ(t) = AαΦ(t), DmΦ(0+) = Am, 0 ≤ m ≤ ⌈α⌉ − 1,

where Dm is the usual differential operator and Aα is an appropriately defined
arbitrary matrix power [11]. The Riemann-Liouville fractional matrix exponen-
tial is the unique matrix function solution of the IVP

0D
α
t Φ(t) = AαΦ(t), Dm−⌈α⌉+αΦ(0+) = Am, 0 ≤ m ≤ ⌈α⌉ − 1.

Note that Dm−⌈α⌉+α is a Riemann-Liouville fractional integral operator. It can
therefore be shown that

x(t) = exp∗(tA;α)x0 and x(t) = exp(tA;α)x0

are the respective unique solutions of the IVPs

C
0 D

α
t x(t) = Aαx(t), Dmx(0+) = Amx0, 0 ≤ m ≤ ⌈α⌉ − 1

and

0D
α
t x(t) = Aαx(t), Dm−⌈α⌉+αx(0+) = Amx0, 0 ≤ m ≤ ⌈α⌉ − 1.

Moreover, a procedure analogous to Putzer’s method was derived in [11]
to calculate these fractional matrix exponentials. Let λ1, λ2, . . . , λn be the
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eigenvalues of Aα, and define the n × n matrices P0, P1, . . . , Pn as in (1.2)
but with A replaced by Aα. Then it was shown in [11] that exp∗(tA;α) and
exp(tA;α) have the form

⌈α⌉−1
∑

k=0

n−1
∑

j=0

yk+1,j+1(t)A
kPj ,

where the functions yk+1,j+1, with 0 ≤ k ≤ ⌈α⌉ − 1 and 0 ≤ j ≤ n − 1, each
depend on t and respectively satisfy a recursive system of fractional ODEs of
either Caputo or Riemann-Liouville type. Clearly, the usual Putzer’s method
is recovered when α = 1.

1.4. Fredholm integral equations

Let a, b ∈ R (a < b) and λ ∈ C. A Fredholm integral equation problem is to
find x = x(t) ∈ L2[a, b] such that

λx(t) =

b
∫

a

K(t, u)x(u) du, a ≤ t ≤ b,

where K is some appropriate kernel function. This is a classical problem in
applied mathematics. More recently, such equations were shown to arise nat-
urally in the the theory of signal processing (e.g. the spectral concentration
problem [13]) and in physics (e.g. the solution of such equations allows for
the experimental spectra to be related to various underlying distributions [12]).
Later we will show that a method analogous to Putzer’s method can be derived
to obtain explicit solutions to Fredholm integral equations.

The consideration of the above problems in Sections 1.1-1.4 leads one to
conjecture if a generalisation exists for abstract linear operator equations of the
form

Lx = Ax,

where L and A are linear operators on some vector space X. The operator L can
be thought of as “evolution-like”, although this is not a strict requirement as we
shall see later. Our objectives are (i) to show that indeed such a generalisation
exists for a broad class of linear operator equations and (ii) to provide a unified
explicit method for obtaining a solution that generalises Putzer’s method and
the idea of a fundamental matrix. The above examples, and more, turn out to
be special cases of our problem.
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The outline of this article is as follows. In Section 2, we give a precise for-
mulation of the linear operator equation to be considered and prove the main
result that provides an explicit solution for it (see Theorem 2.1), as well as ob-
tain some important consequences such as sufficient conditions for convergence
(see Corollary 2.3) and the number of terms to take in the series to get to within
a desired accuracy (see Corollary 2.5). In Section 3, we give applications of our
result to (i) operator exponentials with matrix exponentials as a special case,
(ii) operator powers with matrix powers as a special case, (iii) linear eigenvalue
problems and (iv) Fredholm integral equations. We give a brief discussion and
conclusion in Section 4.

2. Problem formulation and main result

Let X be a Banach space over a field F, e.g. F = R or F = C. Denote by B(X)
the collection of all bounded linear operators on X. Then it is well known that
B(X) is a Banach algebra. We wish to consider operator equations of the form

Lx = Ax (2.1)

for appropriate operators A and L. We assume that A ∈ B(X). To state
the assumptions on L, we need to introduce some preliminary hypotheses. Let
(Uj)

∞
j=1 be a sequence in B(X) and (cj)

∞
j=1 a sequence in F such that

∞
∑

j=1

|cj+1|‖A− Uj‖ · · · ‖A− U1‖ < ∞. (2.2)

Take T0 = I (the identity operator on X) and define the sequence (Tj)
∞
j=1 in

B(X) by
Tj = (A− Uj)Tj−1, j ≥ 1. (2.3)

It follows that
Tj = (A− Uj) · · · (A− U1), j ≥ 1.

Suppose that L is an an operator (not necessarily bounded) with domainD(L) ⊂
X such that

L(
∞
∑

j=0

cj+1Tjx0) =
∞
∑

j=0

L(cj+1Tjx0) (2.4)

and

L(c1x0)− c1U1x0,

L(cj+1Tjx0)− cj+1Uj+1Tjx0 − cjTjx0, j ≥ 1
(2.5)
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for every x0 ∈ X. The goal is to show that x = Tx0, where T =
∑∞

j=0 cj+1Tj ,
is an explicit solution of the operator equation (2.1).

Theorem 2.1. Assume that A ∈ B(X). Suppose that (Uj)
∞
j=1 is a se-

quence in B(X) and (cj)
∞
j=1 is a sequence in F such that the convergence con-

dition (2.2) holds. Let L be an operator with domain D(L) ⊂ X that satisfies
(2.4) and (2.5), where the sequence (Tj)

∞
j=1 in B(X) is given by (2.3). Then

x = Tx0, T =

∞
∑

j=0

cj+1Tj (2.6)

satisfies the operator equation (2.1) for every x0 ∈ X.

Remark 2.2. To motivate the hypotheses of Theorem 2.1, it is worthwhile
to compare them with those of Putzer’s method for calculating the matrix expo-
nential. The sequence (Uj)

∞
j=1 is the analogue of the eigenvalues λ1, λ2, . . . , λn

of the n × n matrix A, the sequence (Tj)
∞
j=1 corresponds to the auxiliary ma-

trices P0, P1, . . . , Pn, the sequence (cj)
∞
j=1 generalises y1(t), y2(t), . . . , yn(t) and

(2.5) corresponds to their associated ODEs. We can think of T as a “funda-
mental operator” since it generalises the fundamental matrix etA.

Proof. If (2.2) holds, then the series
∑∞

j=0 cj+1Tj converges absolutely. But
B(X) is complete, so

∑∞
j=0 cj+1Tj converges to some T ∈ B(X), i.e.

T =
∞
∑

j=0

cj+1Tj or lim
n→∞

‖T −
n−1
∑

j=0

cj+1Tj‖ = 0.

We claim that Ax =
∑∞

j=0 cj+1ATjx0. Indeed, if x = Tx0, then Ax = A(Tx0) =
(AT )x0 and

‖(AT )x0 −
n−1
∑

j=0

cj+1ATjx0‖ = ‖(AT )x0 − (A
n−1
∑

j=0

cj+1Tj)x0‖

≤ ‖A‖‖T −
n−1
∑

j=0

cj+1Tj‖‖x0‖.

This proves the claim since

lim
n→∞

‖(AT )x0 −

n−1
∑

j=0

cj+1ATjx0‖ = 0 or Ax =

∞
∑

j=0

cj+1ATjx0. (2.7)
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We see from (2.3) that Tj+1 = (A− Uj+1)Tj for j ≥ 0; hence

ATj = (A− Uj+1 + Uj+1)Tj = Tj+1 + Uj+1Tj

and, combining this with (2.4) and (2.7), we obtain

Lx−Ax =

∞
∑

j=0

L(cj+1Tjx0)−

∞
∑

j=0

cj+1(Tj+1 + Uj+1Tj)x0

=
∞
∑

j=0

L(cj+1Tjx0)−
∞
∑

j=0

cj+1Tj+1x0 −
∞
∑

j=0

cj+1Uj+1Tjx0

=

∞
∑

j=0

L(cj+1Tjx0)−

∞
∑

j=1

cjTjx0 −

∞
∑

j=0

cj+1Uj+1Tjx0.

Rearranging terms and using (2.5) yields

Lx−Ax = L(c1x0) +
∞
∑

j=1

L(cj+1Tjx0)−
∞
∑

j=1

cjTjx0

− c1U1x0 −

∞
∑

j=1

cj+1Uj+1Tjx0 = 0.

Hence Lx−Ax = 0, i.e. x = Tx0 is an explicit solution of (2.1).

Next we give some sufficient conditions on (Uj)
∞
j=1 and (cj)

∞
j=1 that guar-

antee the convergence condition (2.2).

Corollary 2.3. With the same assumptions as in Theorem 2.1, suppose
that the following conditions hold:

(i) r ≥ supj≥1 ‖Uj‖ and R > ‖A‖ + 2r.

(ii) cj+1 = O((R− r)−j) as j → ∞.

Then (2.2) holds and therefore (2.6) is a solution of (2.1).

Remark 2.4. Condition (i) states that (Uj)
∞
j=1 is uniformly bounded

by r and that R > 2r > r. Condition (ii) assumes that cj+1 decays to zero
sufficiently fast as j becomes large.
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Proof. From (i) we see that

‖A− Uj‖ ≤ ‖A‖ + ‖Uj‖ ≤ ‖A‖ + r, j ≥ 1,

while (ii) implies that there exist K > 0 and J ≥ 1 such that

|cj+1| ≤ K(R− r)−j, j ≥ J. (2.8)

Define

ρ =
‖A‖+ r

R− r
∈ (0, 1). (2.9)

Then
∞
∑

j=J

|cj+1|‖A− Uj‖ · · · ‖A− U1‖ ≤ K

∞
∑

j=J

ρj < ∞

since 0 < ρ < 1 in (2.9). Therefore (2.2) holds and the conclusion follows from
Theorem 2.1.

The next corollary prescribes the number of terms to take in the series (2.6)
to get to within a desired tolerance.

Corollary 2.5. Assume the hypotheses of Corollary 2.3 with J = 1 in
(2.8). Define

Nǫ =
log ǫ(1−ρ)

K‖x0‖

log ρ
, x0 6= 0,

and the error after n terms as

En = x−

n−1
∑

j=0

cj+1Tjx0.

Then for every ǫ > 0, we have ‖En‖ < ǫ whenever n > Nǫ.

Proof. Using (2.8), it is straightforward to see that

‖En‖ ≤

∞
∑

j=n

|cj+1|‖A− Uj‖ · · · ‖A− U1‖‖x0‖

≤ K‖x0‖
∞
∑

j=n

ρj = K‖x0‖
ρn

1− ρ

and the result follows after rearranging the expression n > Nǫ.
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3. Illustrative examples

In this section, we give several problems to illustrate Theorem 2.1 and Corol-
lary 2.3.

Example 3.1 (Operator exponential). Suppose that r > 0 and R >

‖A‖ + 2r. This implies that R > 2r > r. Take any sequence (αj)
∞
j=1 in

D̄r(0) = {z ∈ C : |z| ≤ r}. For t > 0, define

y1(t) = eα1t, yj+1(t) =

t
∫

0

eαj+1(t−u)yj(u) du, j ≥ 1. (3.1)

It is not difficult to show that

y′1(t) = α1y1(t), y′j+1(t) = αj+1yj+1(t) + yj(t), j ≥ 1.

Take Uj = αjI and cj = yj(t) for each j ≥ 1 in Theorem 2.1. Then

T (t) = y1(t)I +
∞
∑

j=1

yj+1(t)(A − αjI) · · · (A− α1I).

Take A ∈ B(X). Define

L(x(t)) = x′(t) = lim
h→0

1

h
[x(t+ h)− x(t)].

To verify (2.4), we see that

L(

∞
∑

j=0

yj+1(t)Tjx0)

= lim
h→0

1

h





∞
∑

j=0

yj+1(t+ h)Tjx0 −
∞
∑

j=0

yj+1(t)Tjx0





= lim
h→0

∞
∑

j=0

1

h
[yj+1(t+ h)− yj+1(t)]Tjx0.

(3.2)

The next series of lemmas are needed to justify the interchange of the limit
and the summation in (3.2), as well as to verify the hypotheses of Corollary 2.3.
We note that

sup
j≥1

‖Uj‖ = sup
j≥1

‖αjI‖ = sup
j≥1

|αj | ≤ r,
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thus Corollary 2.3 (i) is true. The following lemma shows that yj+1(t) = O((R−
r)−j) as j → ∞ and therefore Corollary 2.3 (ii) holds.

Lemma 3.2. For every t > 0, there holds

|yj+1(t)| ≤
eRt

(R− r)j
, j ≥ 1. (3.3)

Proof. As Re z ≤ |Re z| ≤ |z| ≤ r < R for z ∈ Dr(0), we see from (3.1)
that

|y1(t)| = eReα1t ≤
eRt

(R− r)0
.

Now suppose that (3.3) is true for j. Then (3.1) again gives

|yj+2(t)| ≤

t
∫

0

eReαj+1(t−u)|yj+1(u)|du ≤

t
∫

0

er(t−u) eRu

(R − r)j
du.

But

ert

(R− r)j

t
∫

0

e(R−r)u du =
ert

(R− r)j+1
[e(R−r)t − 1] ≤

eRt

(R − r)j+1
,

which implies that

|yj+2(t)| ≤
eRt

(R − r)j+1

and thus proves the lemma.

Lemma 3.3. Let a > 0. Then there exists h0 > 0 (which may depend on
a) such that

|eah − 1|

|h|
≤ 2a, 0 < |h| ≤ h0.

In particular,

eah̄ − 1

h̄
=

|eah̄ − 1|

|h̄|
≤ 2a, 0 < h̄ ≤ h0.

Proof. We observe that

|eah − 1|

|h|
=

eah − 1

|h|
, h 6= 0.
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Define g(h) = eah − 2ah− 1. Then g(0) = 0 and g(∞) = ∞. Furthermore, g is

convex with a global minimum at log(2)
a

and g( log(2)
a

) < 0. It follows that there

exists a unique h0 >
log(2)

a
> 0 (which may depend on a) such that g(h0) = 0.

Comparing the slopes of h 7→ eah and h 7→ 2ah + 1 at h = 0, we deduce that
eah ≤ 2ah+ 1 if 0 < h ≤ h0 and 2ah+ 1 < eah if h < 0. Combining, we obtain

eah − 1

h
≤ 2a, 0 < |h| ≤ h0.

The second result is obvious from the first.

Lemma 3.4. If z ∈ D̄r(0) and h ∈ R \ {0}, then

ezh − 1

|h|
≤

er|h| − 1

|h|
.

Proof. Since |z| ≤ r and h 6= 0, the result follows from

ezh − 1

h
=

1

h

∞
∑

k=1

hkzk

k!
.

Remark 3.5. Using Lemma 3.3, there exists h1 > 0 (which may depend
on R− r) such that

|e(R−r)h − 1|

|h|
≤ 2(R − r), 0 < |h| ≤ h1.

Moreover, there exists h2 > 0 (which may depend on r) such that

er|h| − 1

|h|
≤ 2r, 0 < |h| ≤ h2.

In the following, take h0 = min(h1, h2) and K = 2[r + (R− r)erh0 ].

Lemma 3.6. Fix t > 0. For all j ≥ 0, there holds

|yj+1(t+ h)− yj+1(t)|

|h|
≤

KeRt

(R− r)j
, 0 < |h| ≤ h0.
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Proof. Eq. (3.1) yields

yj+1(t+ h) =

t+h
∫

0

eαj+1(t+h−u)yj(u) du

= eαj+1hyj+1(t) + eαj+1h

t+h
∫

t

eαj+1(t−u)yj(u) du,

from which we deduce that

yj+1(t+ h)− yj+1(t)

h
=

eαj+1h − 1

h
yj+1(t)

+
eαj+1h

h

t+h
∫

t

eαj+1(t−u)yj(u) du.

This can be rewritten as

yj+1(t+ h)− yj+1(t)

h
=

eαj+1h − 1

h
yj+1(t)

+
eαj+1h − 1

h

t+h
∫

t

eαj+1(t−u)yj(u) du+
1

h

t+h
∫

t

eαj+1(t−u)yj(u) du.

From Lemma 3.2, we obtain

∣

∣

∣

t+h
∫

t

eαj+1(t−u)yj(u) du
∣

∣

∣
≤

eRt

(R − r)j
|e(R−r)h − 1|, h 6= 0.

Again using Lemmas 3.2 and 3.4, we see that

∣

∣

∣

yj+1(t+ h)− yj+1(t)

h

∣

∣

∣
≤

er|h| − 1

|h|

eRt

(R− r)j

+
er|h| − 1

|h|

eRt

(R− r)j
|e(R−r)h − 1|+

1

|h|

eRt

(R− r)j
|e(R−r)h − 1|

=
er|h| − 1

|h|

eRt

(R− r)j
+

er|h|

|h|

eRt

(R− r)j
|e(R−r)h − 1|.

For 0 < |h| ≤ h0, Remark 3.5 gives

∣

∣

∣

yj+1(t+ h)− yj+1(t)

h

∣

∣

∣
≤ 2r

eRt

(R − r)j
+ 2(R − r)erh0

eRt

(R− r)j
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=
KeRt

(R − r)j
.

We are now ready to complete the verification of (2.4) using (3.2). Note
that

‖Tj‖ ≤ ‖A− αjI‖ · · · ‖A− α1I‖ ≤ (‖A‖+ r)j , j ≥ 1.

From Lemma 3.6, we have

‖
yj+1(t+ h)− yj+1(t)

h
Tjx0‖ ≤

|yj+1(t+ h)− yj+1(t)|

|h|
‖Tj‖‖x0‖

≤ Kj ,

where Kj = KeRt‖x0‖ρ
j and ρ is as in (2.9). Since

∑∞
j=0Kj is convergent, we

conclude that
∞
∑

j=0

yj+1(t+ h)− yj+1(t)

h
Tjx0

converges uniformly for 0 < |h| ≤ h0. Thus (3.2) gives

L(
∞
∑

j=0

yj+1(t)Tjx0) =
∞
∑

j=0

lim
h→0

yj+1(t+ h)− yj+1(t)

h
Tjx0

=

∞
∑

j=0

y′j+1(t)Tjx0 =

∞
∑

j=0

L(yj+1(t)Tjx0)

and this completes the verification of (2.4).
The last thing we need to check is (2.5). We see that

L(c1x0)− c1U1x0 = [y′1(t)− α1y1(t)]x0 = 0,

L(cj+1Tjx0)− cj+1Uj+1Tjx0 − cjTjx0

= [y′j+1(t)− αj+1yj+1(t)− yj(t)]Tjx0 = 0, j ≥ 1.

Since both conditions (i) and (ii) of Corollary 2.3 have been verified, (2.2) holds
and a solution of x′(t) = Ax(t) is given by

x(t) = T (t)x0,

T (t) = y1(t)I +

∞
∑

j=1

yj+1(t)(A − αjI) · · · (A− α1I).
(3.4)
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As R can be taken arbitrarily large as long as R > ‖A‖ + 2r, (3.4) is valid for
any sequence (αj)

∞
j=1 in C such that |αj | ≤ r for j ≥ 1.

The simplest case to choose (αj)
∞
j=1 = (0, 0, . . .). Eq. (3.1) gives yj(t) =

tj−1

(j−1)! for all j ≥ 1 and (3.4) simplifies to

x(t) = T (t)x0, T (t) = I +

∞
∑

j=1

tj

j!
Aj = exp(tA),

thus recovering the operator exponential.
Another choice, for example, is (αj)

∞
j=1 = (α, 0, . . .), where α ∈ C\{0}. We

see from (3.1) that y1(t) = eαt, and claim that

yj+1(t) =
1

αj

[

eαt −

j−1
∑

k=0

(αt)k

k!

]

, j ≥ 1.

Eq. (3.1) gives

y2(t) =

t
∫

0

eαu du =
1

α
(eαt − 1).

Suppose that the claim is true for j. Then

yj+2(t) =

t
∫

0

yj+1(u) du =
1

αj

t
∫

0

[

eαu −

j−1
∑

k=0

(αu)k

k!

]

du

=
1

αj+1
(eαt − 1)−

1

αj

j−1
∑

k=0

αk

k!

tk+1

k + 1
.

But
j−1
∑

k=0

αk

k!

tk+1

k + 1
=

1

α

j−1
∑

k=0

(αt)k+1

(k + 1)!
=

1

α

j
∑

k=1

(αt)k

k!

and therefore

yj+2(t) =
1

αj+1
(eαt − 1)−

1

αj+1

j
∑

k=1

(αt)k

k!
=

1

αj+1

[

eαt −

j
∑

k=0

(αt)k

k!

]

,

which proves the claim. Hence (3.4) yields x(t) = T (t)x0, where

T (t) = eαtI +

∞
∑

j=1

1

αj

[

eαt −

j−1
∑

k=0

(αt)k

k!

]

Aj−1(A− αI).
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Remark 3.7. If we impose the initial condition x(0) = x0 on x′(t) =
Ax(t), then the unique solution of this IVP is

x(t) = exp(tA)x0.

Uniqueness of the solution yields

exp(tA) = eαtI +

∞
∑

j=1

1

αj

[

eαt −

j−1
∑

k=0

(αt)k

k!

]

Aj−1(A− αI)

as a non-power series representation of the operator exponential. More gener-
ally,

exp(tA) = y1(t)I +

∞
∑

j=1

yj+1(t)(A− αjI) · · · (A− α1I)

for any uniformly bounded sequence (αj)
∞
j=1 in C.

Example 3.8 (Putzer method for the matrix exponential). Continuing
with the previous example, we now consider whether the sequence (αj)

∞
j=1 can

be chosen in such a way that the series in (3.4) collapses to a finite sum. This
can be done if X is finite dimensional, say X = R

n, due to the Cayley-Hamilton
Theorem.

Let x(t), x0 ∈ R
n. Suppose that A ∈ Mn(R) has eigenvalues λ1, λ2, . . . , λn.

Then x′(t) = Ax(t) simplifies to a system of n linear first-order ODEs. Choose
αj = λj for 1 ≤ j ≤ n and αj = 0 for j ≥ n+1. The Cayley-Hamilton Theorem
implies that

(A− αjI) · · · (A− α1I) = O, j ≥ n,

where O is the n× n zero matrix. Therefore we have x(t) = T (t)x0, where

T (t) = y1(t)I +

n−1
∑

j=1

yj+1(t)(A− λjI) · · · (A− λ1I)

and

y1(t) = eλ1t, yj+1(t) =

t
∫

0

eλj+1(t−u)yj(u) du, 1 ≤ j ≤ n− 1.

Given the initial condition x(0) = x0, then uniqueness of the solution yields

exp(tA) = y1(t)I +

n−1
∑

j=1

yj+1(t)(A − λjI) · · · (A− λ1I) (3.5)

and we recover the Putzer method for computing the matrix exponential [10].
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Example 3.9 (Operator power). Let r > 0 and R > ‖A‖ + 2r. Then
R > 2r > r. Take any sequence (αj)

∞
j=1 belonging to D̄r(0) = {z ∈ C : |z| ≤ r}.

For any m ∈ N ∪ {0}, define

y1(m) = αm
1 , yj+1(m) =

m−1
∑

k=0

αm−1−k
j+1 yj(k), j ≥ 1. (3.6)

It is not difficult to show that

y1(m+ 1) = α1y1(m),

yj+1(m+ 1) = αj+1yj+1(m+ 1) + yj(m), j ≥ 1.

Choose Uj = αjI and cj = yj(m) for each j ≥ 1 in Theorem 2.1. Then

T (m) = y1(m)I +

∞
∑

j=1

yj+1(m)(A− αjI) · · · (A− α1I).

Take A ∈ B(X). Define

L(x(m)) = x(m+ 1).

To verify (2.4), we see that

L(

∞
∑

j=0

yj+1(m)Tjx0) =

∞
∑

j=0

yj+1(m+ 1)Tjx0 =

∞
∑

j=0

L(yj+1(m)Tjx0).

Finally, to check (2.5), we calculate

L(c1x0) = c1U1x0 = [y1(m+ 1)− α1y1(m)]x0 = 0,

L(cj+1Tjx0)− cj+1Uj+1Tjx0 − cjTjx0

= [yj+1(m+ 1)− αj+1yj+1(m)− yj(m)]Tjx0 = 0, j ≥ 1.

Note that

sup
j≥1

‖Uj‖ = sup
j≥1

‖αjI‖ = sup
j≥1

|αj | ≤ r;

hence Corollary 2.3 (i) holds. Similar to Lemma 3.2, we claim that

|yj+1(m)| ≤
Rm

(R− r)j
, j ≥ 0. (3.7)
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It would follow that yj+1(m) = O((R − r)−j) as j → ∞ and Corollary 2.3 (ii)
would be valid. Eq. (3.6) gives

|y1(m)| = |α1|
m ≤ rm ≤

Rm

(R− r)0
.

Suppose that (3.7) is true for j. Then from (3.6) we see that

|yj+2(m)| ≤
m−1
∑

k=0

|αj+2|
m−1−k|yj+1(k)| ≤

m−1
∑

k=0

rm−1−k Rk

(R− r)j
.

But
rm−1

(R − r)j

m−1
∑

k=0

(R

r

)k

=
Rm − rm

(R− r)j+1
≤

Rm

(R− r)j+1
,

which proves the claim since

|yj+2(m)| ≤
Rm

(R − r)j+1
.

As both conditions (i) and (ii) of Corollary 2.3 hold, (2.2) is satisfied and a
solution of x(m+ 1) = Ax(m) is given by

x(m) = T (m)x0,

T (m) = y1(m)I +

∞
∑

j=1

yj+1(m)(A− αjI) · · · (A− α1I).
(3.8)

Since R can be taken arbitrarily large provided R > ‖A‖ + 2r, (3.8) is valid
for any sequence (αj)

∞
j=1 in C such that |αj | ≤ r for j ≥ 1. For instance, if we

choose the constant sequence (αj)
∞
j=1 = (α,α, . . .) for some α ∈ C \ {0}, then

(3.6) gives

y1(m) = αm, yj+1(m) =
αm−j

j!

j−1
∏

k=0

(m− k), j ≥ 1.

The latter is true because

yj+1(m+ 1)− αj+1yj+1(m)− yj(m) =
αm+1−j

j!

j−1
∏

k=0

(m+ 1− k)

−
αm−j+1

j!

j−1
∏

k=0

(m− k)−
αm−j+1

(j − 1)!

j−2
∏

k=0

(m− k)
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=
αm+1−j

j!

[

j−1
∏

k=0

(m− k + 1)− (m+ 1)

j−2
∏

k=0

(m− k)

]

= 0.

Therefore,

T (m) = αmI +

∞
∑

j=1

[

αm−j

j!

j−1
∏

k=0

(m− k)

]

(A− αI)j

= αmI +
m
∑

j=1

[

αm−j

j!

j−1
∏

k=0

(m− k)

]

(A− αI)j

=

m
∑

j=0

(

m

j

)

(αI)m−j(A− αI)j = Am

and we recover the usual operator power. If we consider x(m + 1) = Ax(m)
with the initial condition x(0) = x0, then x(m) = Amx0 is a solution. Taking
any other uniformly bounded sequence (αj)

∞
j=1 in C, we see from (3.6) and (3.8)

that x(0) = T (0)x0 = x0. Assuming that the solution of the IVP is unique, we
deduce that

Am = y1(m)I +
∞
∑

j=1

yj+1(m)(A− αjI) · · · (A− α1I). (3.9)

Similar to (3.4), (3.9) provides an infinite number of ways of representing the
operator power.

Example 3.10 (Elaydi-Harris method for the matrix power). Continuing
with the previous example, we now consider whether the sequence (αj)

∞
j=1 can

be chosen in such a way that the series (3.9) collapses to a finite sum. This is
possible if X is finite dimensional, say X = R

n, due to the Cayley-Hamilton
Theorem.

Let x(m), x0 ∈ R
n. Suppose that A ∈ Mn(R) is invertible and has eigen-

values λ1, λ2, . . . , λn. Note that each eigenvalue is nonzero. Then x(m + 1) =
Ax(m) simplifies to a system of n linear first-order difference equations. Choose
αj = λj for 1 ≤ j ≤ n and αj = 0 for j ≥ n+1. The Cayley-Hamilton Theorem
implies that

(A− αjI) · · · (A− α1I) = O, j ≥ n,

where O is the n× n zero matrix. Hence we have x(m) = T (m)x0, where

T (m) = y1(m)I +

n−1
∑

j=1

yj+1(m)(A − λjI) · · · (A− λ1I)
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and

y1(m) = λm
1 yj+1(m) =

m−1
∑

k=0

λm−1−k
j+1 yj(k), 1 ≤ j ≤ n− 1.

If we impose the initial condition x(0) = x0, then uniqueness of the solution
yields

Am = y1(m)I +
n−1
∑

j=1

yj+1(m)(A− λjI) · · · (A− λ1I)

and we recover the Elaydi-Harris method for computing the matrix power [5].

Example 3.11 (Linear eigenvalue problem). Let λ ∈ C, A ∈ B(X) and
Lx = λx. Hence we have the linear eigenvalue problem

Ax = λx.

Take Uj = αjI for all j ≥ 1, where (αj)
∞
j=1 is some sequence in C to be

determined. More specifically, let r > 0 and R > ‖A‖ + 2r; hence R > 2r > r.
Suppose that

α1 = λ, αj ∈ DR−r(λ)
c ∩ D̄r(0), j ≥ 2.

Then

α1 = λ, |λ− αj | ≥ R− r, |αj | ≤ r, j ≥ 2. (3.10)

The second inequality in (3.10) verifies Corollary 2.3 (i). For the sequence (cj)
∞
j=1,

take

c1 = 1, cj+1 =
cj

λ− αj+1
, j ≥ 1.

Note that cj+1 exists since |λ− αj+1| > 0 for all j ≥ 1. Thus

cj+1 =
1

∏j+1
k=2(λ− αk)

, j ≥ 1

and therefore from (3.10) we observe that

|cj+1| ≤
1

(R− r)j
, j ≥ 1.

This verifies condition (ii) of Corollary 2.3.
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We see that

L(

∞
∑

j=0

cj+1Tjx0) = λ

∞
∑

j=0

cj+1Tjx0 =

∞
∑

j=0

λcj+1Tjx0

=
∞
∑

j=0

L(cj+1Tjx0).

Moreover,
L(c1x0)− c1U1x0 = (λ− α1)x0 = 0,

L(cj+1Tjx0)− cj+1Uj+1Tjx0 − cjTjx0

= (λcj+1 − αj+1cj+1 − cj)Tjx0 = 0, j ≥ 1.

Hence L satisfies (2.4) and (2.5). Therefore, for every x0 ∈ X, a solution of
Ax = λx is

x = x0 +

∞
∑

j=1

1
∏j+1

k=2(λ− αk)
(A− αjI) · · · (A− α2I)(A− λI)x0.

A special case is if λ is an eigenvalue of A with eigenvector x0. Then the series
on the right-hand side drops out and we get x = x0.

For example, choose r > 0 and R > 0 such that R− r > ‖A‖+ r. Suppose
that |λ| ≥ R− r. Take α1 = λ and αj = 0 for all j ≥ 2. Then (3.10) is satisfied.

We see that
∏j+1

k=2(λ− αk) =
∏j+1

k=2 λ = λj and a solution of Ax = λx is

x = x0 +

∞
∑

j=1

1

λj
Aj−1(A− λI)x0, x0 ∈ X. (3.11)

Example 3.12 (Fredholm integral equation). Consider the Sturm-Liouville
system

−x′′(t) = µf(t)x(t) = 0, x(0) = x(1) = 0.

Using Green’s functions, we can rewrite this as the Fredholm integral equation

x(t) = µ

1
∫

0

g(t, u)f(u)x(u) du, 0 ≤ t ≤ 1, (3.12)

where

g(t, u) =

{

t(1− u) if t ≤ u,

u(1− t) if u ≤ t.
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It is known [6] that a nontrivial solution in X = L2[0, 1] exists if

|µ| ≥





1
∫

0

1
∫

0

g(t, u)2f(u)2dudt





− 1

2

.

Letting λ = 1
µ
, (3.12) can be expressed as the operator equation

λx(t) = (Ax)(t) =

1
∫

0

K(t, u)x(u) d u, 0 ≤ t ≤ 1,

where the kernel is K(t, u) = g(t, u)f(u). For simplicity, take x0(t) = 1 for all
0 ≤ t ≤ 1 without loss of generality. Hence

(Ax0)(t) =

1
∫

0

K(t, u) du =

1
∫

0

g(t, u)f(u) du,

y(t;λ) = ((A− λI)x0)(t) =

1
∫

0

g(t, u)f(u) du − λ.

Note that

‖Ax‖2 =

1
∫

0

(Ax)(t)2 dt =

1
∫

0





1
∫

0

K(t, u)x(u) du





2

dt.

The Cauchy-Schwarz inequality yields

‖Ax‖2 ≤

1
∫

0





1
∫

0

K(t, u)2 du









1
∫

0

x(u)2 du



dt

= ‖x‖2
1
∫

0

1
∫

0

K(t, u)2 dudt

or

‖Ax‖ ≤





1
∫

0

1
∫

0

g(t, u)2f(u)2dudt





1

2

‖x‖.
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This gives

‖A‖ ≤





1
∫

0

1
∫

0

K(t, u)2dudt





1

2

=





1
∫

0

1
∫

0

g(t, u)2f(u)2dudt





1

2

.

Following the previous example, take r > 0 and R > 0 such that





1
∫

0

1
∫

0

g(t, u)2f(u)2dudt





1

2

< R− 2r.

This would imply that ‖A‖ < R− 2r or R− r > ‖A‖+ r. If





1
∫

0

1
∫

0

g(t, u)2f(u)2dudt





− 1

2

≤ |µ| =
1

|λ|
≤

1

R− r
, (3.13)

then using (3.11), an explicit solution of (3.12) is

x(t) = 1 +
∞
∑

j=1

µj(Aj−1y)
(

t;
1

µ

)

, y
(

t;
1

λ

)

=

∫ 1

0
g(t, u)f(u) du−

1

µ
,

provided µ satisfies (3.13).

4. Discussion and concluding remarks

In this article, we generalised the fundamental matrix and gave a new method
to obtain an explicit solution for a class of linear operator equations that encom-
passes systems of ODEs, difference equations and fractional ODEs. This class
also includes operator exponentials and operator powers, as well as eigenvalue
problems and Fredholm integral equations. In the case when the underlying
Banach space is R

n, we recovered known methods for calculating the matrix
exponential [10], matrix power [5] and fractional matrix exponentials [11]. The
explicit solution is in the form of a series. We also gave sufficient conditions for
the series to converge, as well as a result that provides the number of terms in
the series to take to get to within a given accuracy.

For linear eigenvalue problems with λ = 1, solving the operator equa-
tion λx = Lx = Ax is equivalent to finding a fixed point of the bounded
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linear operator A, i.e. finding x ∈ X such that Ax = x. One classical way of
doing this is via the use of the Contraction Mapping Theorem [15]. The method
we propose here is an alternative approach to estimating the fixed point that
does not rely on contractions and also provides error bounds.

We can also study the nonhomogeneous problem

Lx = Ax+ y,

where y ∈ X is given and L is an invertible bounded linear operator such that
‖A‖ ≤ 1

‖L−1‖
. Therefore L−A is invertible and

‖(L−A)−1‖ ≤
‖L−1‖

1− ‖L−1‖‖A‖

(see [6, p. 240], for instance). We claim that for any x0 ∈ X, an explicit solution
of Lx = Ax+ y is

x = Tx0 + (L−A)−1y.

But since Tx0 is a solution of the homogeneous equation Lx = Ax, this follows
easily from

Lx−Ax = (L−A)(Tx0) + (L−A)(L−A)−1y = y.

In their seminal work, Moler and Van Loan [8] considered different ways to
compute the matrix exponential etA. Most of the methods rely on being able
to compute the eigenvalues and eigenvectors of the matrix A, which is a highly
nontrivial issue especially when there are repeated eigenvalues. The method we
propose here relies instead on choosing a sequence (αj)

∞
j=1 in C that satisfies

the (relatively mild) conditions of Corollary 2.3. Then Corollary 2.5 gives the
number of terms to take in the series for etA to get a desired accuracy, while
avoiding the calculation of the eigenvalues of A.

A natural question to ask is whether the method proposed here will also
work when A is an unbounded linear operator, e.g. a derivative operator. There
are two important considerations that will have to be addressed. The first one
is that the domains for the operators in the sequences of Theorem 2.1 should all
be the same. The other, more important, issue is the question of convergence
of the series in (2.6). We will have to choose a sequence (Uj)

∞
j=1 that would

somehow annihilate the operator appearing inside the series, thus bypassing the
problem of convergence. Alternatively, we could consider an infinite dimensional
version of the Cayley-Hamilton Theorem along the lines of [14], although this
would only hold for a restricted class of unbounded operators. The extension
to unbounded operators is currently work in progress.
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