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1. Introduction

Let 3 < α ≤ 4. In this paper, we consider the existence and uniqueness of
solutions for the fractional-order boundary value problem

{

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = g(u(1)),
(1)

where, f is a continuous function of [0, 1] × R into R, g is a function of R into
itself, and Dα

0+ denotes the Riemann-Liouville fractional derivative of order α
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which is defined in Section 2. A function u ∈ C[0, 1], where C[0, 1] is the set of
all continuous functions of [0, 1] into R, is called a solution of the problem (1)
if Dα

0+u ∈ C[0, 1] and u satisfies (1).
Problem (1) contains the fourth-order boundary value problem

{

u′′′′(t) = f(t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = g(u(1)).
(2)

Ma and da Silva [4] studied the existence and iterative schemes to solve problem
(2).

On the other hand, Toyoda and Watanabe [5] considered the fractional-
order boundary value problem:

{

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
(3)

Problem (3) represents the case of the problem (1) in which g ≡ 0. Due to the
restriction of g, results in [5] cannot deal with problem (2).

The purpose of this paper is to extend results of the fourth-order problem
(2) to results of the fractional-order problem (1).

2. Preliminaries

In this section, we introduce preliminary facts. In particular, we construct
the function, G(s, t), for the boundary value problem (1), and discuss some
properties of that function.

We begin with the definition of the Riemann-Liouville fractional integral
and fractional derivative. Let α > 0 and u be a continuous function of [0, 1]
into R. The Riemann-Liouville fractional integral of order α of u, denoted Iα0+u,
is defined by

Iα0+u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds,

and the Riemann-Liouville fractional derivative of order α of u, denoted Dα
0+u,

is defined by

Dα
0+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1u(s)ds,

where n denotes a positive integer such that n − 1 < α ≤ n. For α ≥ 0 and
β > −1, we have
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Dα
0+t

β =
Γ(β + 1)

Γ(β − α+ 1)
tβ−α,

see [3].
Let us remind that in this paper we consider the problem (1) in the case

3 < α ≤ 4 and 0 ≤ t ≤ 1.
Let 3 < α ≤ 4, and γ ∈ R. A function, u, is then a solution of the boundary

value problem
{

Dα
0+u(t) = h(t), 0 < t < 1,

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = γ,

if and only if u is a solution of the integral equation

u(t) =

∫ 1

0
G(t, s)h(s)ds +

γtα−1

(α− 1)(α − 2)
−

γtα−2

(α− 2)(α − 3)
(4)

for 0 ≤ t ≤ 1, where

G(t, s)

=































1

Γ(α)

(

(t− s)α−1 + tα−1(1− s)α−4((4 − α)s− 1)

+(α− 1)tα−2(1− s)α−4s
)

for 0 ≤ s < t ≤ 1,
1

Γ(α)

(

tα−1(1− s)α−4((4 − α)s− 1)

+(α− 1)tα−2(1− s)α−4s
)

for 0 ≤ t ≤ s < 1.

A solution u of the problem has the form

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds + C1t

α−1 + C2t
α−2 + C3t

α−3 + C4t
α−4

for 0 ≤ t ≤ 1, where C1, C2, C3 and C4 are constants; see [1]. The conditions
u(0) = 0 and u′(0) = 0 imply C3 = 0 and C4 = 0, respectively. Since

u′(t) =
α− 1

Γ(α)

∫ t

0
(t− s)α−2h(s)ds + (α− 1)C1t

α−2 + (α− 2)C2t
α−3

for 0 ≤ t ≤ 1, we have

u′′(t) =
(α− 1)(α − 2)

Γ(α)

∫ t

0
(t− s)α−3h(s)ds + (α− 1)(α − 2)C1t

α−3

+ (α− 2)(α − 3)C2t
α−4
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for 0 < t ≤ 1. Moreover, since u′′(1) = 0, we have

(α− 1)(α − 2)

Γ(α)

∫ 1

0
(1− s)α−3h(s)ds + (α− 1)(α − 2)C1

+ (α − 2)(α − 3)C2 = 0.

Furthermore, we have

u′′′(t) =
(α − 1)(α − 2)(α − 3)

Γ(α)

∫ t

0
(t− s)α−4h(s)ds

+ (α− 1)(α − 2)(α − 3)C1t
α−4

+ (α− 2)(α − 3)(α − 4)C2t
α−5

for 0 < t ≤ 1. Finally, since u′′′(1) = γ, we have

(α − 1)(α − 2)(α − 3)

Γ(α)

∫ 1

0
(1− s)α−4h(s)ds

+ (α− 1)(α − 2)(α − 3)C1 + (α− 2)(α − 3)(α − 4)C2 = γ.

Then, we obtain

C1 =
γ

(α− 1)(α − 2)
+

1

Γ(α)

∫ 1

0

(

(α− 4)(1− s)α−3

−(α− 3)(1 − s)α−4
)

h(s)ds

=
γ

(α− 1)(α − 2)
+

1

Γ(α)

∫ 1

0
(1− s)α−4((4 − α)s− 1)h(s)ds,

and

C2 = −
γ

(α− 2)(α − 3)

+
α− 1

Γ(α)

∫ 1

0

(

(1− s)α−4 − (1− s)α−3
)

h(s)ds

= −
γ

(α− 2)(α − 3)
+

α− 1

Γ(α)

∫ 1

0
(1− s)α−4sh(s)ds.

Therefore, we obtain

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds + C1t

α−1 + C2t
α−2

=

∫ 1

0
G(t, s)h(s)ds +

γtα−1

(α− 1)(α − 2)
−

γtα−2

(α − 2)(α − 3)
.

This is equation (4).
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Remark 1. Let 3 < α ≤ 4. The function G(t, s) satisfies

l(t, s) ≤ G(t, s) ≤ m(t, s)

for 0 ≤ t ≤ 1 and 0 ≤ s < 1, where

l(t, s) =











1

Γ(α)
tα−2(1− s)α−4(2s + st− t) (s < t),

α− 2

Γ(α)
tα−2(1− s)α−4s (t ≤ s),

and

m(t, s) =











α− 1

Γ(α)
tα−2(1− s)α−4s (s < t),

3

Γ(α)
tα−2(1− s)α−4s (t ≤ s).

In fact, when s < t, we have

Γ(α)G(t, s)

= tα−2(1− s)α−4
(

(t− s)α−1(1− s)4−αt2−α

+((4− α)s − 1)t+ (α− 1)s)

≥ tα−2(1− s)α−4 ((α− 1)s(1− t) + 3st− t)

≥ tα−2(1− s)α−4(2s(1− t) + 3st− t)

= tα−2(1− s)α−4(2s+ st− t)

and

Γ(α)G(t, s)

= tα−1
(

1−
s

t

)α−1
+ tα−1(1− s)α−4 ((4− α)s− 1)

+ (α− 1)tα−2(1− s)α−4s

≤ tα−1(1− s)α−1 + tα−1(1− s)α−4 ((4− α)s− 1)

+ (α− 1)tα−2(1− s)α−4s

= tα−2(1− s)α−4
(

t(1− s)3 + ((4− α)s− 1) t+ (α− 1)s
)

≤ tα−2(1− s)α−4 (t(1− s) + ((4− α)s− 1) t+ (α− 1)s)

≤ tα−2(1− s)α−4 (t(1− s) + (s− 1)t+ (α− 1)s)

= (α− 1)tα−2(1− s)α−4s.
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When t ≤ s, we have

Γ(α)G(t, s) = tα−2(1− s)α−4((4− α)st+ (α − 2)s + (s− t))

≥ (α− 2)tα−2(1− s)α−4s

and

Γ(α)G(t, s) = tα−2(1− s)α−4((4− α)st− t+ (α− 1)s)

≤ tα−2(1− s)α−4s((4− α) + (α− 1))

= 3tα−2(1− s)α−4s.

Notice that the function G(t, s) is not bounded on [0, 1] × [0, 1). However,
since the function G(t, s) satisfies

∫ 1

0
|G(t, s)|ds ≤

1

Γ(α)

(

1

α
+

α

α− 3

)

(5)

for all 0 ≤ t ≤ 1, sup0≤t≤1

∫ 1
0 |G(t, s)|ds is finite. In fact, since |(4−α)s−1| ≤ 1

for all 0 ≤ s < 1, we have

∫ 1

0
|G(t, s)|ds

≤
1

Γ(α)

∫ t

0
(t− s)α−1ds+

tα−1

Γ(α)

∫ 1

0
| ((4− α)s − 1) |(1− s)α−4ds

+
(α− 1)tα−2

Γ(α)

∫ 1

0
(1− s)α−4ds

≤
tα

αΓ(α)
+

tα−1

Γ(α)

∫ 1

0
(1− s)α−4ds+

(α− 1)tα−2

Γ(α)

∫ 1

0
(1− s)α−4ds

=
tα

αΓ(α)
+

tα−1

(α− 3)Γ(α)
+

(α− 1)tα−2

(α− 3)Γ(α)
≤

1

Γ(α)

(

1

α
+

α

α− 3

)

for 0 ≤ t ≤ 1. By (5), sup0≤t≤1

∫ 1
0 |G(t, s)|ds ≤ 1

Γ(α)

(

1
α
+ α

α−3

)

.

3. Main results

In this section, we consider the boundary value problem (1). By the Banach
fixed point theorem, we obtain a sufficient condition for the uniqueness and
existence of solutions of the problem.
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Theorem 2. Let 3 < α ≤ 4, f be a continuous function of [0, 1] × R into
R, and g be a Lipschitz continuous function of R into itself with a nonnegative
constant L. Assume that there exists a nonnegative constant λ with

λΛ+
2L

(α− 1)(α − 2)(α − 3)
< 1,

such that for any 0 ≤ t ≤ 1 and u1, u2 ∈ R,

|f(t, u1)− f(t, u2)| ≤ λ|u1 − u2|,

where Λ is the constant

Λ = sup
0≤t≤1

∫ 1

0
|G(t, s)|ds.

Then, the boundary value problem (1) has a unique solution.

Proof. Note that by (5), Λ is finite. By (4), we see that the solution of the
boundary value problem can be written as

u(t) =

∫ 1

0
G(t, s)f(s, u(s))ds +

g(u(1))tα−1

(α− 1)(α − 2)
−

g(u(1))tα−2

(α− 2)(α − 3)
,

for 0 ≤ t ≤ 1. The set C[0, 1] is a Banach space with the supremum norm
‖u‖ = sup0≤t≤1 |u(t)| for u ∈ C[0, 1]. Let T be mappings of X into itself
defined by:

T (u)(t)

=

∫ 1

0
G(t, s)f(s, u(s))ds +

g(u(1))tα−1

(α− 1)(α − 2)
−

g(u(1))tα−2

(α− 2)(α − 3)
,

for u ∈ C[0, 1] and 0 ≤ t ≤ 1. Then, a fixed point of T is a solution of the
boundary value problem.

Let u1, u2 ∈ C[0, 1] and 0 ≤ t ≤ 1. Then we have

|T (u1)(t)− T (u2)(t)|

≤

∣

∣

∣

∣

∫ 1

0
G(t, s) (f(s, u1(s))− f(s, u2(s))) ds

∣

∣

∣

∣

+

(

1

(α− 2)(α − 3)
−

1

(α− 1)(α− 2)

)

|g(u1(1)) − g(u2(1))|
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≤

∫ 1

0
|G(t, s)||f(s, u1(s))− f(s, u2(s))|ds

+ L

(

1

(α− 2)(α − 3)
−

1

(α− 1)(α − 2)

)

‖u1 − u2‖

≤ λΛ‖u1 − u2‖+
2L

(α− 1)(α − 2)(α − 3)
‖u1 − u2‖.

Therefore we have

‖Tu1 − Tu2‖ ≤

(

λΛ+
2L

(α− 1)(α − 2)(α − 3)

)

‖u1 − u2‖.

Since λΛ + 2L
(α−1)(α−2)(α−3) < 1, T is a contraction. By the Banach fixed point

theorem, T has a unique fixed point. This fixed point is a solution of the
problem.

For the case where α = 4 in Theorem 2, we have the following; see Theorem
1 in [4].

Corollary 3. Let f be a continuous function of [0, 1] × R into R with
a bounded partial derivative with respect to the second variable. Let g be a
Lipschitz continuous function of R into itself with a nonnegative constant L.
Let

λ = max
(t,u)∈[0,1]×R

∣

∣

∣

∣

∂f

∂u
(t, u)

∣

∣

∣

∣

.

If

λ

8
+

L

3
< 1,

then the boundary value problem (2) has a unique solution.

Proof. By the mean value theorem, we have for any 0 ≤ t ≤ 1 and u1, u2 ∈
R,

|f(t, u1)− f(t, u2)| ≤ λ|u1 − u2|.

In the case that α = 4, the function G(t, s) reduces to

G(t, s) =

{

1
6s

2(3t− s) (s < t),
1
6t

2(3s − t) (t ≤ s).

Since
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Λ = sup
0≤t≤1

∫ 1

0
|G(t, s)|ds =

1

8
,

we obtain the conclusion by Theorem 2.

To conclude the paper, we present an example demonstrating an application
of Theorem 2.

Example 4. Let us consider the boundary value problem
{

D3.1
0+u(t) =

3
(54et+1)(1+|u(t)|) , 0 < t < 1,

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = g(u(1)),
(6)

where

g(t) =
1

100
sin t.

By (5), the constant Λ in Theorem 2 satisfies

Λ ≤
1

Γ(α)

(

1

α
+

α

α− 3

)

= 14.2530 · · · < 15.

Moreover, for any 0 ≤ t ≤ 1 and u1, u2 ∈ R, we have,

|f(t, u1)− f(t, u2)| ≤
3

55
|u1 − u2|,

where

f(t, u) =
3

(54et + 1)(1 + |u|)

for 0 ≤ t ≤ 1 and u ∈ R; see Section 4 in [2]. Since the constants λ = 3
55 and

L = 1
100 in Theorem 2, we have

λΛ+
2L

(α− 1)(α − 2)(α − 3)
≤

3

55
× 15 +

2× 1
100

2.1× 1.1× 0.1
= 0.9̇04761̇.

It follows from Theorem 2 that problem (6) has a unique solution.
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