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THE INTEGER RECURRENCE P (n) = a+ P (n − φ(a))
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Abstract: We prove that for a positive integer a the integer sequence P (n)
satisfying for all n,−∞ < n < ∞, the recurrence P (n) = a+P (n−φ(a)), φ(a)
the Euler function, generates in increasing order all integers P (n) coprime to a.
The finite Fourier expansion of P (n) is given in terms of a, n, and the φ(a)-th
roots of unity. Properties of the sequence are derived.
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1. Introduction

For a positive integer a =
∏ω

i=1 peii , we set R(a) =
∏ω

i=1 pi , Q(a) =
∏ω

i=1 (pi−
1) , φ(a) = a

R(a)Q(a), which, if a is fixed, we write R, Q, φ , respectively. Note

that Q|φ and that φ(R(a)) = Q(R(a)).
We show that the integer sequence P (n) defined for all n running from −∞

to ∞ , by the inhomogeneous recurrence of order φ(a)

P (n) = a+ P (n− φ(a))

and certain φ(a)+1 initial conditions, to be specified, gives in increasing order,
P (n) < P (n + 1), all integers coprime to a.

The minimal integer recurrence satisfied by P (n) is

P (n) = R(a) + P (n−Q(a)).

Using known facts from the theory of linear integer recurrences, Graham et
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al. [3], P (n) is explicitly expressed as a finite Fourier expansion, Zygmund [7],
involving a, n, and the φ(a)-th roots of unity as studied in [4]. Similarly, P (n)
can be expressed as a finite Fourier expansion, Ahlfors [1], involving R(a), n,
and the Q(a)-th roots of unity, Derbyshire [2].

Properties of the function P (n) are established, such as f.ex. limn→∞

P (n)
n

=
R(a)
Q(a) .

The infinite sequence P (n), with index n suitably normalized, can be re-
garded as the natural extension to Z of the “Euler” set of a, namely the φ(a)
positive integers smaller than a and coprime to a, arranged in increasing order,
Sloane [6].

2. The sequence P (n)

We first prove the minimal integer recurrence satisfied by P (n), from which,
afterwards, we deduce the integer recurrence P (n) = a+ P (n− φ(a)).

Theorem 1. For a fixed integer a ≥ 1, let a1(= 1) < a2 < . . . < aQ(=
R − 1) denote the Q positive integers smaller than R and coprime to R. The
integer sequence P (n), normalized for n = 1 to give P (1) = R + 1, which
satisfies for all n running from −∞ to ∞, the integer recurrence

P (n) = R+ P (n−Q),

and the Q+ 1 initial conditions

P (−Q+ 1) = a1 (= 1)

P (−Q+ 2) = a2

. . . . . . . . . (1)

P (0) = aQ (= R− 1),

P (1) = aQ+1 (= R+ 1),

generates in monotonically increasing order, P (n) < P (n + 1), all integers
coprime to a.

Proof. We first show that P (n) is coprime to a.
For n = 0 this is obvious since P (0) = R− 1.
For n > 0, we have by definition
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P (n) = R+ P (n−Q),

P (n −Q) = R+ P (n− 2Q),

. . . . . . . . .

P (n− (k − 1)Q) = R+ P (n− kQ),

which, when added, give for any integer k ≥ 0.

P (n) = kR+ P (n− kQ). (2)

Setting k =
[

n+Q−1
Q

]

, where [x] the greatest integer ≤ x, we have

n− 1

Q
<

[n+Q− 1

Q

]

≤
n+Q− 1

Q
,

n− 1 <
[n+Q− 1

Q

]

Q ≤ n+Q− 1,

−Q+ 1 ≤ n−
[n+Q− 1

Q

]

Q < 1.

Hence from (1) we get

1 ≤ P
(

n−
[n+Q− 1

Q

]

Q
)

< R+ 1.

Since P
(

n−
[

n+Q−1
Q

]

Q
)

is coprime to a because of (1), it follows from (2) that
P (n) is also coprime to a.

For n < 0 it can be shown, by a similar argument, that

P (−n) = −kR+ P (−n+ kQ),

and by choosing k =
[

n+1
Q

]

we again derive that P (−n) is coprime to a.
It results that for any n ∈ Z and any k ∈ Z, we have

P (n) = kR+ P (n− kQ). (3)

We now show that P (n) < P (n + 1). Substituting in (3) n by n + 1 and
subtracting we get

P (n + 1)− P (n) = P (n+ 1− kQ)− P (n− kQ).

Choosing, as above, for k either
[

n+Q−1
Q

]

or
[

n+1
Q

]

, we infer from the initial
conditions (1), that P (n) < P (n+ 1).
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From Theorem 1 we obtain the following theorem.

Theorem 2. For a fixed integer a ≥ 1, let a1(= 1) < a2 < . . . < aφ(=
a − 1) denote the φ positive integers smaller than a and coprime to a. The
integer sequence P (n), normalized for n = 1 to give P (1) = a + 1, which
satisfies for all n running from −∞ to ∞, the integer recurrence

P (n) = a+ P (n− φ),

and the φ+ 1 initial conditions

P (−φ+ 1) = a1 (= 1),

P (−φ+ 2) = a2,

. . . . . . . . .

P (0) = aφ (= a− 1),

P (1) = aφ+1 (= a+ 1),

generates in monotonicaly increasing order P (n) < P (n+1), all integers coprime
to a.

Proof. Setting in (3) k = a
R
, we have

P (n) = a+ P (n− φ).

3. The Fourier expansion of P (n)

The integer recurrence P (n) = R + P (n − Q) is inhomogeneous. Subtracting
P (n+ 1) = R+ P (n+ 1−Q) we get the homogeneous recurrence

P (n+ 1)− P (n)− P (n+ 1−Q) + P (n−Q) = 0.

Its characteristic polynomial is

xQ+1 − xQ − x+ 1 = (x− 1)2(x− e
2πi 1

Q ) . . . (x− e
2πiQ−1

Q ).

Using known facts from the theory of integer recurrences Graham [3], we there-
fore have

P (n) = c0n+ c1 +

Q−1
∑

ν=1

cν+1e
2πi ν

Q
n
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= c0n+

Q−1
∑

ν=0

cν+1e
2πi ν

Q
n
. (4)

The Q + 1 coefficients cν can be determined by solving the system of Q + 1
linear equations, resulting from following Q+ 1 initial conditions

c0(−Q+ 1) +

Q−1
∑

ν=0

cν+1e
2πi ν

Q
(−Q+1)

= a1,

c0(−Q+ 2) +

Q−1
∑

ν=0

cν+1e
2πi ν

Q
(−Q+2) = a2,

. . . . . . . . .

c0(0) +

Q−1
∑

ν=0

cν+1e
2πi ν

Q
(0)

= aQ,

c0(1) +

Q−1
∑

ν=0

cν+1e
2πi ν

Q (1) = aQ+1.

Another way is to take only the first Q equations of above system, transfer the
terms c0(−Q+1), . . . , c0(0) to the right side, and find the value of c0 afterwards.
Accordingly we write

Q−1
∑

ν=0

cν+1e
2πi ν

Q
(−Q+1)

= a1 − c0(−Q+ 1),

Q−1
∑

ν=0

cν+1e
2πi ν

Q
(−Q+2)

= a2 − c0(−Q+ 2),

. . . . . . . . .

Q−1
∑

ν=0

cν+1e
2πi ν

Q
(0) = aQ − c0(0).

Putting (Vandermonde)

Da = |e
2πi k

Q
ℓ
|, 0 ≤ k ≤ Q− 1, −Q+ 1 ≤ ℓ ≤ 0,

we get for the coefficients

cν =
1

Da

Q
∑

µ=1

(−1)µ−1(aµ − c0(−Q+ µ)) Dν,µ, (5)
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where Dν,µ are the (Q− 1)× (Q− 1) minors of Da, obtained by replacing the
µ-th column with aµ − c0(−Q+ µ).

In order to find the value of c0 we substitute in (4) n by n+Q. This gives

P (n+Q) = c0(n+Q) +

Q−1
∑

ν=0

cνe
2πi ν

Q
(n+Q)

= c0Q+ c0n+

Q−1
∑

ν=0

cνe
2πi n

Q
n
= c0Q+ P (n).

But P (n+Q) = R+P (n), as can be seen from (3), if we substitute n by n+kQ

and put k = 1. Hence,

c0Q = R,

c0 =
R

Q
.

Summarizing, we have proved the following theorem.

Theorem 3. P (n), −∞ < n < ∞, can be expressed by the Fourier
expansion

P (n) =
R

Q
n+

Q−1
∑

ν=0

cνe
2πi ν

Q
n
,

where the coefficients cν are given by (5).

Exactly the same procedure as above, applied to the recurrence

P (n) = a+ P (n− φ)

gives the following theorem.

Theorem 4. P (n), −∞ < n < ∞, can be expressed by the Fourier
expansion

P (n) =
R

Q
n+

φ−1
∑

ν=0

dνe
2πi ν

φ
n
,

where the coefficients dν , depending on φ, are given by a formula similar to (4).

Dividing by n, we get
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Corollary 5.

lim
n→∞

P (n)

n
=

R

Q
.

The following transformation formulas are an immediate consequence of
above theorems.

Corollary 6. If R(a) = R(b), then for all n:

P (n−Q(a)) = P (n−Q(b)),

P (n− φ(a)) = P (n− φ(b)).

Note. In a next communication, we will examine P (n) from the angle of
generating functions. To this end, we introduce the GF of the sequence P (n)
for a fixed integer a ≥ 1,

G(t) =
∞
∑

n=1

P (n)tn.

The recurrence P (n) = a+ P (n− φ) promptly gives

G(t) = a
t

(t− 1)(tφ − 1)
−

1

tφ − 1

φ
∑

ν=1

aνt
ν .

The coefficients are then expressed by Ahlfors [1], Rudin [5], as

P (n) =
a

2πi

∫

c

t

(t− 1)(tφ − 1)

1

tn+1
dt−

φ
∑

ν=1

aν

2πi

∫

c

tν

tφ − 1

1

tn+1
dt.

Evaluation of the integrals or expansion in series of the GF yields expressions
of P (n) in terms of a, n, φ(a) and the “Euler” set {aν}. Comparison with the
resp. Fourier expansions results in identities involving the parameters.
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