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THE INTEGER RECURRENCE P(n) = a + P(n — ¢(a))
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Abstract: We prove that for a positive integer a the integer sequence P(n)
satisfying for all n, —oo < n < oo, the recurrence P(n) = a+ P(n — ¢(a)), ¢(a)
the Euler function, generates in increasing order all integers P(n) coprime to a.
The finite Fourier expansion of P(n) is given in terms of a, n, and the ¢(a)-th
roots of unity. Properties of the sequence are derived.
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1. Introduction

For a positive integer a = [[; p{*, weset R(a) =[] pi, Qa) =TI, (pi—
1), ¢(a) = %Q(a), which, if a is fixed, we write R, @), ¢, respectively. Note
that Q|¢ and that ¢(R(a)) = Q(R(a)).

We show that the integer sequence P(n) defined for all n running from —oo

to oo , by the inhomogeneous recurrence of order ¢(a)
P(n) = a+ P(n — ¢(a))

and certain ¢(a)+ 1 initial conditions, to be specified, gives in increasing order,
P(n) < P(n+ 1), all integers coprime to a.
The minimal integer recurrence satisfied by P(n) is

P(n) = R(a) + P(n — Q(a)).

Using known facts from the theory of linear integer recurrences, Graham et
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al. [3], P(n) is explicitly expressed as a finite Fourier expansion, Zygmund [7],
involving a, n, and the ¢(a)-th roots of unity as studied in [4]. Similarly, P(n)
can be expressed as a finite Fourier expansion, Ahlfors [1], involving R(a), n,
and the Q(a)-th roots of unity, Derbyshire [2].

P(n)

Properties of the function P(n) are established, such as f.ex. lim,, o, =~ =

The infinite sequence P(n), with index n suitably normalized, can be re-
garded as the natural extension to Z of the “Euler” set of a, namely the ¢(a)
positive integers smaller than a and coprime to a, arranged in increasing order,

Sloane [6].

2. The sequence P(n)

We first prove the minimal integer recurrence satisfied by P(n), from which,
afterwards, we deduce the integer recurrence P(n) = a+ P(n — ¢(a)).

Theorem 1. For a fixed integer a > 1, let a;(=1) < az < ... < ag(=
R — 1) denote the @ positive integers smaller than R and coprime to R. The
integer sequence P(n), normalized for n = 1 to give P(1) = R + 1, which
satisfies for all n running from —oo to oo, the integer recurrence

P(n) =R+ P(n—-Q),
and the QQ + 1 initial conditions
P(-Q+1)=a (=1)

P(—Q+2) = a2

P(O) =aq (:R_l)?
P(1) = agy1 (= R+1),

generates in monotonically increasing order, P(n) < P(n + 1), all integers
coprime to a.

Proof. We first show that P(n) is coprime to a.
For n = 0 this is obvious since P(0) = R — 1.
For n > 0, we have by definition
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P(n)=R+ P(n—Q),
Pin—Q)=R+ P(n—2Q),

Pin—(k—1)Q) =R+ P(n—kQ),
which, when added, give for any integer & > 0.

P(n) = kR + P(n — kQ). (2)

Setting k = [MTCH], where [z] the greatest integer < z, we have

n—1 n+Q -1 n+Q -1
SRR S e

n+Q—1
Q

—Q+1§n—[

n—1<[ }QSn—i—Q—l,

Ei%:l]Q<1.

Hence from (1) we get

n+Q—1
Q
Since P(n — ["JFTCH] Q) is coprime to a because of (1), it follows from (2) that

P(n) is also coprime to a.
For n < 0 it can be shown, by a similar argument, that

1< P(n—[ ]Q)<R+1.

P(—n) = —kR+ P(—n+ kQ),

and by choosing k = [’%1] we again derive that P(—n) is coprime to a.
It results that for any n € Z and any k£ € Z, we have

P(n) = kR + P(n — kQ). (3)

We now show that P(n) < P(n + 1). Substituting in (3) n by n + 1 and
subtracting we get

Pn+1)—P(n)=Pn+1-kQ)— P(n—kQ).

Choosing, as above, for k either ["JFTCH] or ["7“], we infer from the initial
conditions (1), that P(n) < P(n+ 1). O
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From Theorem 1 we obtain the following theorem.

Theorem 2. For a fixed integer a > 1, let a1(=1) < as < ... < ag(=
a — 1) denote the ¢ positive integers smaller than a and coprime to a. The
integer sequence P(n), normalized for n = 1 to give P(1) = a + 1, which
satisfies for all n running from —oo to oo, the integer recurrence

P(n) =a+ P(n— ¢),
and the ¢ + 1 initial conditions

P(-¢+1)=a (=1),

P(—¢ +2) = ay,

P(O) = a¢ (:a’_l)7
P(1) = a1 (=a+1),

generates in monotonicaly increasing order P(n) < P(n+1), all integers coprime
to a.

Proof. Setting in (3) k = %, we have

3. The Fourier expansion of P(n)

The integer recurrence P(n) = R+ P(n — @) is inhomogeneous. Subtracting
P(n+1)=R+ P(n+1— Q) we get the homogeneous recurrence

Pn+1)—Pn)—Pn+1-Q)+P(n—Q)=0.

Its characteristic polynomial is
1

. Q-1
29t @ —r 1= (2 - 122 — Q) (z—

Q).
Using known facts from the theory of integer recurrences Graham [3], we there-
fore have

Q-1
P(n) = con + c1 + Z ™A

v=1
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Q-1

2mi L
= con + E cpprem@”, (4)
v=0

The @ + 1 coefficients ¢, can be determined by solving the system of @ + 1
linear equations, resulting from following @ + 1 initial conditions

co(—Q +1) +ZCV Taiche Q+1)—a1,
v=0

co(—Q +2) +Zcu+1e2m g(-Q+2) _ = as,
v=0

Q-1
0) + Z chrleZma(O) = ag,
v=0

1)+ Z c,,JrleZ”%(l) = aQ41-

Another way is to take only the first Q) equations of above system, transfer the
terms co(—Q+1),...,co(0) to the right side, and find the value of ¢q afterwards.
Accordingly we write

Q-1

> ™I =6 — (@ + 1),
v=0

Z 1™ T = gy — 0o(—Q +2),

Q-1
Z c,,+162m§(0) = ag — co(0).

v=0
Putting (Vandermonde)

-k
D, =e"™3Y, 0<k<Q-1, —-Q+1<(<0,

we get for the coefficients

Q
B 21 @~ eo(-Q+ 1) Du (5)

p=1
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where D, , are the (Q — 1) x (Q — 1) minors of D,, obtained by replacing the
p-th column with a,, — co(—Q + p).
In order to find the value of ¢y we substitute in (4) n by n + Q. This gives

Q-1
Pn+Q)=c(n+Q)+ Z ¢, et
v=0
Q-1 '
= coQ + con + Z e, e?™Q" = @ + P(n).
v=0

But P(n+Q) = R+ P(n), as can be seen from (3), if we substitute n by n+kQ
and put £k = 1. Hence,

COQ :R>
cn = E
0 Q

Summarizing, we have proved the following theorem.

Theorem 3. P(n), —oo < n < oo, can be expressed by the Fourier
expansion

R
P(n)=—=n+ Z c ™",
Q v=0
where the coefficients ¢, are given by (5).

Exactly the same procedure as above, applied to the recurrence
P(n)=a+ P(n— ¢)

gives the following theorem.

Theorem 4. P(n), —oo < n < oo, can be expressed by the Fourier
expansion

R &2
P(n)=—=n+ Z d, ™",
Q v=0
where the coefficients d,,, depending on ¢, are given by a formula similar to (4).

Dividing by n, we get



THE INTEGER RECURRENCE P(n) = a + P(n — ¢(a)) 391

Corollary 5.

P
lim £ _ B

n—oco N Q

The following transformation formulas are an immediate consequence of
above theorems.

Corollary 6. If R(a) = R(b), then for all n:
P(n —Q(a)) = P(n—Q(b)),
P(n —¢(a)) = P(n = ¢(b)).

Note. In a next communication, we will examine P(n) from the angle of
generating functions. To this end, we introduce the GF of the sequence P(n)
for a fixed integer a > 1,

The recurrence P(n) = a + P(n — ¢) promptly gives

i — ¢ A
(t)_a(t—l)(t¢—1)_t‘i’—l;ayt'

The coefficients are then expressed by Ahlfors [1], Rudin [5], as

¢
a t 1 ay tY 1
P(n) = — dt — — | —— ——dt.
(n) 270 /C (t—1)(t» —1) tntl ; 270 /ct¢ —1 ¢ntl

Evaluation of the integrals or expansion in series of the GF yields expressions
of P(n) in terms of a, n, ¢(a) and the “Euler” set {a, }. Comparison with the
resp. Fourier expansions results in identities involving the parameters.
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