International Journal of Applied Mathematics

Volume 33 No. 3 2020, 385-392

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v33i3.2

THE INTEGER RECURRENCE $P(n) = a + P(n - \phi(a))$

Constantin M. Petridi

Department of Mathematics
National and Kapodistrian
University of Athens
Panepistimiopolis 15784, Athens, GREECE

Abstract: We prove that for a positive integer a the integer sequence P(n) satisfying for all $n, -\infty < n < \infty$, the recurrence $P(n) = a + P(n - \phi(a))$, $\phi(a)$ the Euler function, generates in increasing order all integers P(n) coprime to a. The finite Fourier expansion of P(n) is given in terms of a, n, and the $\phi(a)$ -th roots of unity. Properties of the sequence are derived.

AMS Subject Classification: 11B37

Key Words: recurrence sequences; Euler function; Fourier expansion; radical of an integer

1. Introduction

For a positive integer $a = \prod_{i=1}^{\omega} p_i^{e_i}$, we set $R(a) = \prod_{i=1}^{\omega} p_i$, $Q(a) = \prod_{i=1}^{\omega} (p_i - 1)$, $\phi(a) = \frac{a}{R(a)}Q(a)$, which, if a is fixed, we write R, Q, ϕ , respectively. Note that $Q|\phi$ and that $\phi(R(a)) = Q(R(a))$.

We show that the integer sequence P(n) defined for all n running from $-\infty$ to ∞ , by the inhomogeneous recurrence of order $\phi(a)$

$$P(n) = a + P(n - \phi(a))$$

and certain $\phi(a) + 1$ initial conditions, to be specified, gives in increasing order, P(n) < P(n+1), all integers coprime to a.

The minimal integer recurrence satisfied by P(n) is

$$P(n) = R(a) + P(n - Q(a)).$$

Using known facts from the theory of linear integer recurrences, Graham et

Received: December 12, 2019 © 2020 Academic Publications

al. [3], P(n) is explicitly expressed as a finite Fourier expansion, Zygmund [7], involving a, n, and the $\phi(a)$ -th roots of unity as studied in [4]. Similarly, P(n) can be expressed as a finite Fourier expansion, Ahlfors [1], involving R(a), n, and the Q(a)-th roots of unity, Derbyshire [2].

Properties of the function P(n) are established, such as f.ex. $\lim_{n\to\infty} \frac{P(n)}{n} = \frac{R(a)}{Q(a)}$.

The infinite sequence P(n), with index n suitably normalized, can be regarded as the natural extension to \mathcal{Z} of the "Euler" set of a, namely the $\phi(a)$ positive integers smaller than a and coprime to a, arranged in increasing order, Sloane [6].

2. The sequence P(n)

We first prove the minimal integer recurrence satisfied by P(n), from which, afterwards, we deduce the integer recurrence $P(n) = a + P(n - \phi(a))$.

Theorem 1. For a fixed integer $a \ge 1$, let $a_1(=1) < a_2 < \ldots < a_Q(=R-1)$ denote the Q positive integers smaller than R and coprime to R. The integer sequence P(n), normalized for n=1 to give P(1)=R+1, which satisfies for all n running from $-\infty$ to ∞ , the integer recurrence

$$P(n) = R + P(n - Q),$$

and the Q+1 initial conditions

$$P(-Q+1) = a_1 \ (=1)$$

$$P(-Q+2) = a_2$$
...
...
$$P(0) = a_Q \ (=R-1),$$

$$P(1) = a_{Q+1} \ (=R+1),$$
(1)

generates in monotonically increasing order, P(n) < P(n+1), all integers coprime to a.

Proof. We first show that P(n) is coprime to a.

For n = 0 this is obvious since P(0) = R - 1.

For n > 0, we have by definition

$$P(n) = R + P(n - Q),$$

$$P(n - Q) = R + P(n - 2Q),$$

$$\dots \qquad \dots$$

$$P(n - (k - 1)Q) = R + P(n - kQ).$$

which, when added, give for any integer $k \geq 0$.

$$P(n) = kR + P(n - kQ). (2)$$

Setting $k = \left[\frac{n+Q-1}{Q}\right]$, where [x] the greatest integer $\leq x$, we have

$$\frac{n-1}{Q} < \left[\frac{n+Q-1}{Q}\right] \le \frac{n+Q-1}{Q},$$

$$n-1 < \left[\frac{n+Q-1}{Q}\right]Q \le n+Q-1,$$

$$-Q+1 \le n-\left[\frac{n+Q-1}{Q}\right]Q < 1.$$

Hence from (1) we get

$$1 \le P\left(n - \left[\frac{n+Q-1}{Q}\right]Q\right) < R+1.$$

Since $P(n - \left[\frac{n+Q-1}{Q}\right]Q)$ is coprime to a because of (1), it follows from (2) that P(n) is also coprime to a.

For n < 0 it can be shown, by a similar argument, that

$$P(-n) = -kR + P(-n + kQ),$$

and by choosing $k = \left[\frac{n+1}{Q}\right]$ we again derive that P(-n) is coprime to a. It results that for any $n \in \mathcal{Z}$ and any $k \in \mathcal{Z}$, we have

$$P(n) = kR + P(n - kQ). \tag{3}$$

We now show that P(n) < P(n+1). Substituting in (3) n by n+1 and subtracting we get

$$P(n+1) - P(n) = P(n+1-kQ) - P(n-kQ).$$

Choosing, as above, for k either $\left[\frac{n+Q-1}{Q}\right]$ or $\left[\frac{n+1}{Q}\right]$, we infer from the initial conditions (1), that P(n) < P(n+1).

From Theorem 1 we obtain the following theorem.

Theorem 2. For a fixed integer $a \ge 1$, let $a_1(=1) < a_2 < \ldots < a_{\phi}(=a-1)$ denote the ϕ positive integers smaller than a and coprime to a. The integer sequence P(n), normalized for n=1 to give P(1)=a+1, which satisfies for all n running from $-\infty$ to ∞ , the integer recurrence

$$P(n) = a + P(n - \phi),$$

and the $\phi + 1$ initial conditions

$$P(-\phi + 1) = a_1 \quad (= 1),$$

 $P(-\phi + 2) = a_2,$
... ...
 $P(0) = a_{\phi} \quad (= a - 1),$
 $P(1) = a_{\phi+1} \quad (= a + 1),$

generates in monotonically increasing order P(n) < P(n+1), all integers coprime to a.

Proof. Setting in (3) $k = \frac{a}{R}$, we have

$$P(n) = a + P(n - \phi).$$

3. The Fourier expansion of P(n)

The integer recurrence P(n) = R + P(n - Q) is inhomogeneous. Subtracting P(n+1) = R + P(n+1-Q) we get the homogeneous recurrence

$$P(n+1) - P(n) - P(n+1-Q) + P(n-Q) = 0.$$

Its characteristic polynomial is

$$x^{Q+1} - x^{Q} - x + 1 = (x-1)^{2} (x - e^{2\pi i \frac{1}{Q}}) \dots (x - e^{2\pi i \frac{Q-1}{Q}}).$$

Using known facts from the theory of integer recurrences Graham [3], we therefore have

$$P(n) = c_0 n + c_1 + \sum_{\nu=1}^{Q-1} c_{\nu+1} e^{2\pi i \frac{\nu}{Q} n}$$

$$= c_0 n + \sum_{\nu=0}^{Q-1} c_{\nu+1} e^{2\pi i \frac{\nu}{Q} n}.$$
 (4)

The Q+1 coefficients c_{ν} can be determined by solving the system of Q+1 linear equations, resulting from following Q+1 initial conditions

$$c_{0}(-Q+1) + \sum_{\nu=0}^{Q-1} c_{\nu+1} e^{2\pi i \frac{\nu}{Q}(-Q+1)} = a_{1},$$

$$c_{0}(-Q+2) + \sum_{\nu=0}^{Q-1} c_{\nu+1} e^{2\pi i \frac{\nu}{Q}(-Q+2)} = a_{2},$$

$$\cdots \qquad \cdots$$

$$c_{0}(0) + \sum_{\nu=0}^{Q-1} c_{\nu+1} e^{2\pi i \frac{\nu}{Q}(0)} = a_{Q},$$

$$c_{0}(1) + \sum_{\nu=0}^{Q-1} c_{\nu+1} e^{2\pi i \frac{\nu}{Q}}(1) = a_{Q+1}.$$

Another way is to take only the first Q equations of above system, transfer the terms $c_0(-Q+1), \ldots, c_0(0)$ to the right side, and find the value of c_0 afterwards. Accordingly we write

$$\sum_{\nu=0}^{Q-1} c_{\nu+1} e^{2\pi i \frac{\nu}{Q}(-Q+1)} = a_1 - c_0(-Q+1),$$

$$\sum_{\nu=0}^{Q-1} c_{\nu+1} e^{2\pi i \frac{\nu}{Q}(-Q+2)} = a_2 - c_0(-Q+2),$$

$$\dots \qquad \dots$$

$$\sum_{\nu=0}^{Q-1} c_{\nu+1} e^{2\pi i \frac{\nu}{Q}(0)} = a_Q - c_0(0).$$

Putting (Vandermonde)

$$D_a = |e^{2\pi i \frac{k}{Q}\ell}|, \quad 0 \le k \le Q - 1, \quad -Q + 1 \le \ell \le 0,$$

we get for the coefficients

$$c_{\nu} = \frac{1}{D_a} \sum_{\mu=1}^{Q} (-1)^{\mu-1} (a_{\mu} - c_0(-Q + \mu)) D_{\nu,\mu},$$
 (5)

where $D_{\nu,\mu}$ are the $(Q-1)\times(Q-1)$ minors of D_a , obtained by replacing the μ -th column with $a_{\mu}-c_0(-Q+\mu)$.

In order to find the value of c_0 we substitute in (4) n by n+Q. This gives

$$P(n+Q) = c_0(n+Q) + \sum_{\nu=0}^{Q-1} c_{\nu} e^{2\pi i \frac{\nu}{Q}(n+Q)}$$

$$= c_0 Q + c_0 n + \sum_{\nu=0}^{Q-1} c_{\nu} e^{2\pi i \frac{n}{Q} n} = c_0 Q + P(n).$$

But P(n+Q) = R + P(n), as can be seen from (3), if we substitute n by n + kQ and put k = 1. Hence,

$$c_0Q = R,$$

$$c_0 = \frac{R}{Q}.$$

Summarizing, we have proved the following theorem.

Theorem 3. P(n), $-\infty < n < \infty$, can be expressed by the Fourier expansion

$$P(n) = \frac{R}{Q}n + \sum_{\nu=0}^{Q-1} c_{\nu} e^{2\pi i \frac{\nu}{Q}n},$$

where the coefficients c_{ν} are given by (5).

Exactly the same procedure as above, applied to the recurrence

$$P(n) = a + P(n - \phi)$$

gives the following theorem.

Theorem 4. P(n), $-\infty < n < \infty$, can be expressed by the Fourier expansion

$$P(n) = \frac{R}{Q}n + \sum_{\nu=0}^{\phi-1} d_{\nu}e^{2\pi i \frac{\nu}{\phi}n},$$

where the coefficients d_{ν} , depending on ϕ , are given by a formula similar to (4).

Dividing by n, we get

Corollary 5.

$$\lim_{n \to \infty} \frac{P(n)}{n} = \frac{R}{Q}.$$

The following transformation formulas are an immediate consequence of above theorems.

Corollary 6. If R(a) = R(b), then for all n:

$$P(n - Q(a)) = P(n - Q(b)),$$

$$P(n - \phi(a)) = P(n - \phi(b)).$$

Note. In a next communication, we will examine P(n) from the angle of generating functions. To this end, we introduce the GF of the sequence P(n) for a fixed integer $a \ge 1$,

$$G(t) = \sum_{n=1}^{\infty} P(n)t^n.$$

The recurrence $P(n) = a + P(n - \phi)$ promptly gives

$$G(t) = a \frac{t}{(t-1)(t^{\phi}-1)} - \frac{1}{t^{\phi}-1} \sum_{\nu=1}^{\phi} a_{\nu} t^{\nu}.$$

The coefficients are then expressed by Ahlfors [1], Rudin [5], as

$$P(n) = \frac{a}{2\pi i} \int_c \frac{t}{(t-1)(t^{\phi}-1)} \frac{1}{t^{n+1}} dt - \sum_{\nu=1}^{\phi} \frac{a_{\nu}}{2\pi i} \int_c \frac{t^{\nu}}{t^{\phi}-1} \frac{1}{t^{n+1}} dt.$$

Evaluation of the integrals or expansion in series of the GF yields expressions of P(n) in terms of a, n, $\phi(a)$ and the "Euler" set $\{a_{\nu}\}$. Comparison with the resp. Fourier expansions results in identities involving the parameters.

References

- [1] L. Ahlfors, *Complex Analysis*, International Series in Pure and Applied Mathematics, 3 Ed., McGraw-Hill Education (1979).
- [2] J. Derbyshire, Unknown Quantity, A Real and Imaginary History of Algebra, Joseph Henry Press, Washington D.C. (2006).

[3] E. Graham, Alf van der Poorten, I. Shparlinski, Th. Ward, *Recurrence Sequences*, Mathematical Surveys and Monographs, **04**, American Mathematical Society (2003).

- [4] C.M. Petridi, Mathematical Structures defined by Identities III, *International Journal of Applied Mathematics*, **32**, No 5 (2019), 793-804; DOI: 10.12732/ijam.v32i5.7.
- [5] R. Walter, *Real and Complex Analysis*, 3rd Ed., McGraw-Hill Book Company (1987).
- [6] N.J.A. Sloane (Ed.), Sequence A007947. The On-Line Encyclopedia of Integer Sequences, OEIS Foundation; https://en.wikipedia.org/wiki/ On-Line_Encyclopedia_of_Integer_Sequences.
- [7] A. Zygmund, *Trigonometric Series* (2nd Ed., Volume I and II combined), Cambridge University Press (1959).