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Abstract: In the literature, two-parameter distributions which exhibit all
three types of decreasing, increasing and bathtub shape hazard rate functions
are very few. In this paper, we propose a new two-parameter distribution, called
Gompertz-weighted exponential distribution, having these three types of haz-
ard rate functions. The proposed distribution is obtained by mixing the frailty
parameter of the Gompertz distribution by weighted exponential distribution.
The parameters are estimated by the maximum likelihood method and their
performance is examined by extensive simulation studies. Three real data ap-
plications are provided to illustrate the superiority of the proposed distribution
over many well known two-parameter distributions.
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1. Introduction

The hazard rate function is an important quantity characterizing life phenom-
ena. Many known distributions in statistics have monotone (dereasing/increasing)
hazard rate functions, for example, gamma, Weibull, exponentiated exponen-
tial, Lomax, linea failure rate distributions. Monotone hazard rate functions
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are found to be popular among many reliability engineers. However, it is widely
believed that many electronic items such as silicon integrated circuits, exhibit
bathtub shape hazard rate function. This belief is supported by data sets in
many industries. Comprehensive reviews of the known distributions that ex-
hibit bathtub shape hazard rate functions are provided in [1], [2] and [3]. These
distributions can have many parameters which complicate their analysis and
estimation process.

In this paper, we are interested in two-parameter distributions which exhibit
bathtub shape hazard rate functions, see, for example, Burr X [4], exponential
power [5], double exponential power [6], Chen [7], weighted Lindley [8], general-
ized Lindley [9]. To the best of our knowledge, generalized Lindley distribution
is the only two-parameter distribution which exhibits bathtub shape as well as
monotone decreasing and monotone increasing hazard rate functions. General-
ized Lindley distribution is obtained by exponentiated the distribution function
of Lindley distribution.

In this paper we propose a new two-parameter distribution which exhibits
bathtub shape as well as monotone decreasing and monotone increasing hazard
rate functions. The proposed distribution is obtained by mixing the frailty pa-
rameter of the Gompertz distribution by a one-parameter weighted exponential
distribution. Structural properties of the new distribution as well as estimation,
simulation nd applications are presented.

The contents of the paper are organized as follows: Section 2 contains the
model derivation, its structural properties including the cumulative distribu-
tion, the quantile, the hazard rate and the mean residual life functions and
their properties. Section 3 contains the order statistics of the proposed model
and their limiting distributions. The stochastic orders are shown in Section 4.
The maximum likelihood estimation of the parameters and simulation studies
to examine the performance of the estimates are given in Section 5. Three appli-
cations of real data sets are provided in Section 6 to demonstrate the superiority
of the proposed model over many well known two-parameter models.

2. The model and structural properties

2.1. Probability density function

LetX|Θ be a conditional random variable having the Gompertz distribution
with frailty parameter θ and scale parameter λ, with conditional probability
density function (p.d.f.):

f(x|θ) = θλ exp[λx− θ(eλx − 1)], x > 0, θ, λ > 0.
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Assume that Θ has a weighted exponential distribution with parameter α and
p.d.f.:

g(θ) = 2α e−αθ(1− e−αθ), θ > 0, α > 0.

The unconditional p.d.f. of X is given by

f(x) =

∫ ∞

0
f(x|θ) . g(θ)dθ

= 2αλeλx
[

1

(eλx + α− 1)2
−

1

(eλx + 2α− 1)2

]

=
2α2λeλx(2eλx + 3α− 2)

(eλx + α− 1)2(eλx + 2α − 1)2
, x > 0, α, λ > 0. (1)

The distribution with p.d.f. (1) will be denoted by GoWE(α, λ).
Note that f(x) can be expressed as a two-parameter negative mixture with

p.d.f.:
f(x) = 2f1(x)− f2(x), x > 0,

where, for j = 1, 2,

fj(x) =
jαλe−λx

[1− (1− jα)e−λx]2
, x > 0, α, λ > 0,

is the p.d.f. of Marshal-Olkin extended exponential distribution, see [10].

Theorem 1. For all λ > 0, f(x) is decreasing (unimodal) if α ≤ 7
3 (if

α > 7
3) with

f(0) =
3λ

2α
, f(∞) = 0.

Proof. The first derivative of f(x) can be expressed as

f ′(x) =
α2(α+ 1)λ2 eλx

(eλx + α− 1)3(eλx + 2α− 1)3
ξ(eλx),

where, for z = eλx > 1,

ξ(z) = −4z3 − 3(3α − 2)z2 − α2z + (α− 1)(2α − 1)(3α − 2),

with ξ(1) = 2α2(3α− 7) and ξ(∞) = −∞.
The cubic function ξ(z) is decreasing in z. Therefore, ξ(z) is negative

(changes sign from positive to negative) if ξ(1) ≤ 0 (ξ(1) > 0). Since f ′(x) has
the same sign as ξ(z), the theorem follows.
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Figure 1 shows the p.d.f. of the GoWE distribution for selected values of α
and λ = 1.

Figure 1: The p.d.f. of the GoWE distribution for selected values of
α and λ = 1.

2.2. Cumulative distribution and quantile functions

The cumulative distribution function (c.d.f.) of the GoWE(α, λ) distribu-
tion is given by

F (x) = P (X ≤ x)

= 1−
2α2

(eλx−1+α) (eλx−1+2α)
, x > 0, α, λ > 0. (2)

The qth quantile xq of the GoWE(α, λ) distribution is the solution of
F (xq) = q, where 0 < q < 1. That is, the solution of

z2q + (3α − 2) zq + (α− 1)(2α − 1)−
2α2

1− q
= 0, zq = eλxq > 1. (3)

The quadratic equation (3) has a unique real solution

zq = 1 +
α

2

(√
8

1− q
+ 1− 3

)
,

that is

xq = F−1(q) =
1

λ
ln

[
1 +

α

2

(√
8

1− q
+ 1− 3

) ]
. (4)
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This quantile function is increasing in α and decreasing in λ.
Figure 2 shows the c.d.f. and quantile function of the GoWE distribution

for selected values of α and λ = 1.

Figure 2: The c.d.f. and quantile function of the GoWE distribution
for selected values of α and λ = 1.

Remarks:

(i) The quantile function is useful in generating random data from the
GoWE(α, λ) distribution.

(ii) The quartiles of the GoWE(α, λ) distribution are given by x0.25, x0.50, x0.75,
respectively.

2.3. Hazard rate function

The hazard rate function (h.r.f.) of the GoWE(α, λ) distribution is given
by

h(x) =
f(x)

1− F (x)

=
λeλx(2eλx + 3α− 2)

(eλx + α− 1)(eλx + 2α− 1)
, x > 0, α, λ > 0. (5)

The following theorem shows the possible shapes of the h.r.f. of the
GoWE(α, λ) distribution.

Theorem 2. For all λ > 0, h(x) is
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(i) decreasing if α ≤ 2
3 ,

(ii) bathtub if 2
3 < α < 5

6 ,
(iii) increasing if α ≥ 5

6 ,
with

h(0) = f(0) =
3λ

2α
, h(∞) = 2λ.

Proof. The first derivative of h(x) can be expressed as

h′(x) =
λ2eλx

(eλx + α− 1)2(eλx + 2α− 1)2
η(eλx),

where

η(z) = (3α− 2)z2 + 4(α− 1)(2α − 1)z + (α− 1)(2α − 1)(3α − 2),

and z = eλx > 1. Note that

η(1) = α2(6α − 5), η(∞) =

{
−∞, for α ≤ 2

3 ,

∞, for α > 2
3 .

(6)

For α ≤ 2
3 < 5

6 < 0, η(z) is decreasing in z and hence η(z) is negative.
For 2

3 < α < 5
6 , the function η(z) has an absolute minimum at the point

z1 =
2(1−α)(2α−1)

3α−2 > 1 and hence η(z) changes sign from negative to positive.

For α ≥ 5
6 , is increasing in z and hence η(z) is positive.

Since h′(x) has the same sign as η(z), the theorem follows.

Figure 3 shows the h.r.f. of the GoWE distribution for selected values of α
and λ = 1.

2.4. Mean residual life function

An alternative ageing measure widely used in applications is the mean resid-
ual life function (m.r.l.f.), defined as

µ(x) = E(X − x|X > x) =
1

1− F (x)

∫ ∞

x

1− F (y) dy, x > 0.

Evidently µ(0) = E(X) = µ is the mean of X.
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Figure 3: The h.r.f. of the GoWE distribution for selected values of
α and λ = 1.

It is well known that decreasing (increasing) h.r.f. implies increasing (de-
creasing) m.r.l.f., see [11]. On the other hand, a bathtub hazard rate function
may produce an upside-down bathtub (decreasing) if f(0)µ > 1 (f(0)µ ≤ 1 ),
see [18].

The following theorem shows the possible shapes of the MRLF of the
GoWE(α, λ) distribution.

Theorem 3. For all λ > 0, µ(x) is

(i) increasing if 0 < α ≤ 2
3 ;

(ii) upside-down bathtub if 2
3 < α < α1 = 0.793379;

(iii) decreasing if α ≥ α1 = 0.793379, with

µ(0) = µ =
2α

λ

[
−
ln(α)

1− α
+

ln(2α)

1− 2α

]
, µ(∞) =

1

2λ
.
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Proof. We have shown in Theorem 2, that for all λ > 0 and α ≤ 2
3 (α ≥ 5

6 =
0.8333), h(x) is decreasing (increasing) and hence, by [11], µ(x) is increasing
(decreasing).

Also, we have shown in Theorem 2, that for all λ > 0 and 2
3 < α < 5

6 , h(x)
is bathtub. Since

f(0)µ = 3

[
−
ln(α)

1− α
+

ln(2α)

1− 2α

]
,

2

3
< α <

5

6
,

it follows that f(0)µ > 1 (≤ 1) if 2
3 < α < α1 ≤

5
6 (23 < α1 ≤ α < 5

6), where α1

is such that

3

[
−
ln(α1)

1− α1
+

ln(2α1)

1− 2α1

]
= 1,

2

3
< α1 <

5

6
.

A numerical solution of the last equation gives α1 = 0.793379. Therefore, by
[18], µ(x) is upside-down bathtub (decreasing) if 2

3 < α < α1 (α1 ≤ α < 5
6).

Figure 4 shows the the m.r.l.f. of the GoWE distribution for selected values
of α and λ = 1.

2.5. Moments and associated measures

The rth raw moment (about the origin) of the GoWE distribution is given
by

µ′
r = E(Xr)

=
2rα

λr

∫ ∞

0
tr−1

[
1

et − (1− α)
−

1

et − (1− 2α)

]
dt

=
2 r! α

λr

[
Lir(1− α)

1− α
−

Lir(1− 2α)

1− 2α

]
,

where

Lir(z) =
z

Γ(r)

∫ ∞

0

tr−1

et − z
dt, r > 0, −∞ < z < 1,

is the polylogarithm function. In particular, Li1(z) = − ln(1− z).

The polylogarithm function is thoroughly covered in the book by [13].
It can be evaluated to arbitrary numerical precision using, for example, in
Mathematica package using the function PolyLog[r,z].
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Figure 4: The m.r.l.f. of the GoWE distribution for selected values
of α and λ = 1.

The first four raw moments are

µ =
2α

λ

[
−
ln(α)

1− α
+

ln(2α)

1− 2α

]
, (7)

µ′
2 =

4 α

λ2

[
Li2(1− α)

1− α
−

Li2(1− 2α)

1− 2α

]
, (8)

µ′
3 =

12 α

λ3

[
Li3(1− α)

1− α
−

Li3(1− 2α)

1− 2α

]
, (9)

µ′
4 =

48 α

λ4

[
Li4(1− α)

1− α
−

Li4(1− 2α)

1− 2α

]
. (10)

The variance, skewness and kurtosis of the GoWE distribution are obtained
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from the expressions

σ2 = E(X − µ)2 = µ′
2 − µ2,

Skewness =
E(X − µ)3

σ3
=

µ′
3 − 3µ′

2 µ+ 2µ3

σ3
,

Kurtosis =
E(X − µ)4

σ4
=

µ′
4 − 4µ′

3µ+ 6µ′
2 µ2 − 3µ4

σ4
,

upon substituting for the raw moments.
Note that the skewness and kurtosis are independent of the scale parameter

λ and depend only on the parameter α.
Figure 5 (6) shows the skewness (kurtosis) of the GoWE distribution as a

function of α.
Figure 6 shows that the skewness may be positive/negative which can be

useful in modelling skewed to the right/left data sets.

Figure 5: Mean and variance of the GoWE distribution as a function
of α and λ = 1.

3. Order statistics

Let X1,X2, ...,Xn be a random sample from a distribution with p.d.f. f(x),
c.d.f. F (x) and let Xi:n denote the ith order statistic. The p.d.f. of the ith
order statistic Xi:n is given by (see [14]).

fi:n(x) = n

(
n− 1

i− 1

)
[F (x)]i−1 [1− F (x)]n−i f(x).
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Figure 6: Skewness and kurtosis of the GoWE distribution as a
function of α.

In particular, the p.d.f. of the minimum order statistic X1:n and maximum
order statistic Xn:n, respectively, are given by

f1:n(x) = n [1− F (x)]n−1 f(x),

fn:n(x) = n [F (x)]n−1 f(x).

In the following theorem, we provide the limiting distributions of X1:n and
Xn:n arising from the GoWE distribution.

Theorem 4. Let X1:n and Xn:n be the minimum and maximum of a
random sample X1,X2, . . . ,Xn from GoWE(α, λ), respectively. Then:

(a) lim
n→∞

P
{X1:n − a∗n

b∗n
≤ x

}
= 1− e−x, x > 0,

(b) lim
n→∞

P
{Xn:n − an

bn
≤ t

}
= exp(−e−t), −∞ < t < ∞,

where a∗n = 0, b∗n = F−1(1/n), an = F−1(1−1/n), and bn = F−1(1−1/(ne))−
F−1(1− 1/n).

Proof. For the GoWE(α, λ), we have, by using L’Hospital rule,

lim
ǫ→0+

F (ǫx)

F (ǫ)
= x lim

ǫ→0+

f(ǫx)

f(ǫ)
= x, x > 0.
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Therefore, by Theorem 8.3.6 (ii) of [14], the minimal domain of attraction of
the GoWE(α, λ) distribution is the standard exponential distribution, proving
part (a).

For the GoWE(α, λ), we have

lim
x→∞

1− F (x+ µ(x)t)

1− F (x)
= lim

x→∞

1− F (x+ t
2λ)

1− F (x)

= e−t, −∞ < t < ∞.

Therefore, by Theorem 8.3.2 (iii) of [14], the maximal domain of attraction of
the GoWE(α, λ) distribution is the standard Gumbel (extreme value) distribu-
tion, proving part (b).

Now, we use Theorem 4 to find the limiting distribution of any order statis-
tic.

Theorem 5. Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be the order statistics of a
random sample X1,X2, . . . ,Xn from GoWE(α, λ). Then, for any fixed i ≥ 1,

(a) lim
n→∞

P
{Xi:n − a∗n

b∗n
≤ x

}
= 1−

i−1∑

r=0

e−x xr

r!
, x > 0,

(b) lim
n→∞

P
{Xn−i+1:n − an

bn
≤ t

}
=

i−1∑

r=0

exp(−e−t)
e−rt

r!
,

−∞ < t < ∞.

Proof. The theorem follows from Equations (8.4.2) and (8.4.3) of [14].

4. Stochastic orders

Stochastic ordering of positive continuous random variables is an important
tool to judge the comparative behavior.

For two random variables X and Y , we consider the following stochastic
orders (for all x):

(i) stochastic order (X �ST Y ) if FX(x) ≥ FY (x);
(ii) hazard rate order (X �HR Y ) if hX(x) ≥ hY (x);
(iii) mean residual life order (X �MRL Y ) if µX(x) ≤ µY (x);
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(iv) likelihood ratio order (X �LR Y ) if fX(x)
fY (x) decreases in x.

The following implications ([15]), are well known:

X �LR Y ⇒ X �HR Y ⇒ X �MRL Y

⇓ (11)

X �ST Y

For fixed scale parameter λ, the following theorem shows that GoWE dis-
tributions are ordered according to the likelihood ratio.

Theorem 6. Let X ∼ GoWE(α1, λ) and Y ∼ GoWE(α2, λ). If 0 < α1 ≤
α2 and λ > 0, then X �LR Y and hence X �HR Y , X �MRL Y , X �ST Y .

Proof. First note that

d

dx

fX(x)

fY (x)
= 2(α1 − α2)λe

λx G(eλx − 1, α1, α2)
fX(x)

fY (x)
,

where, for z = eλx − 1 > 0,

G(z, α1, α2) =
1

(z + α1)(z + α2)
+

2

(z + 2α1)(z + 2α2)

−
3

(2z + 3α1)(2z + 3α2)

≥
3

(z + 2α1)(z + 2α2)
−

3

(2z + 3α1)(2z + 3α2)

≥ 0.

Therefore, d
dx

fX(x)
fY (x) ≤ 0, for α1 ≤ α2, i.e. fX(x)/fY (x) is decreasing in x. That

is X �LR Y . The remaining statements follow from (11).

For fixed shape parameter α, the following theorem shows that GoWE dis-
tributions are ordered according to the hazard rate.

Theorem 7. Let X ∼ GoWE(α, λ1) and Y ∼ GoWE(α, λ2). If α ≥ 1
and λ1 ≥ λ2, then X �HR Y and hence X �MRL Y , X �ST Y .

Proof. Since α ≥ 1 and λ1 ≥ λ2 > 0, it follows that

hX(x) =
λ1e

λ1x(2eλ1x + 3α− 2)

(eλ1x + α− 1)(eλ1x + 2α− 1)
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= λ1

(
1

1 + (α− 1)e−λ1x
+

1

1 + (2α − 1)e−λ1x

)

≥ λ2

(
1

1 + (α− 1)e−λ2x
+

1

1 + (2α − 1)e−λ2x

)

= hY (x).

Therefore, X �HR Y . The remaining statements follow from (11).

5. Estimation of the parameters

5.1. Maximum likelihood estimation

Let x1, x2, . . . , xn be a random sample from the GoWE(α, λ) distribution
with p.d.f. (1). The log-likelihood function is given by

ℓ(α, λ) = n ln(2α2λ) + nλx̄+

n∑

i=1

ln(2eλxi + 3α− 2)

−2

n∑

i=1

{
ln(eλxi + α− 1) + ln(eλxi + 2α− 1)

}
. (12)

It follows that the maximum-likelihood estimators (MLEs) (α̂, λ̂) of (α, λ)
are obtained by solving the system of equations:

∂ℓ

∂α
= 0,

∂ℓ

∂λ
= 0.

That is,

2n

α
+

n∑

i=1

3

2eλxi + 3α− 2
−

2

eλxi + α− 1
−

4

eλxi + 2α− 1
= 0,

n

λ
+ nx̄+

n∑

i=1

2xie
λxi

2eλxi + 3α− 2
−

2xie
λxi

eλxi + α− 1
−

2xie
λxi

eλxi + 2α − 1
= 0.

The last system of equations does not have explicit solution and numerical
techniques are required to obtain the MLEs. Alternatively, the MLEs of the
parameters can be obtained by directly maximizing the log-likelihood function
ℓ(α, λ), using numerical optimization algorithms. For example, the nlm (non-
linear minimization) function in R language (R Core Team 2016) or the numer-
ical maximization function NMaximize in Mathematica software (Wolframe).
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5.2. Asymptotic distribution of MLEs

For interval estimation and tests of hypotheses, the asymptotic distribution
of the MLE is needed. Under certain regularity conditions [16], the MLE (α̂, λ̂)
is asymptotically bivariate normal with mean (α, λ) and variance-covariance
matrix J−1

n (α, λ) where

Jn(α, λ) =

[
J11(α, λ) J12(α, λ)
J12(α, λ) J22(α, λ)

]
=

[
− ∂2ℓ

∂α2 − ∂2ℓ
∂α∂λ

− ∂2ℓ
∂α∂λ

− ∂2ℓ
∂λ2

]

is the observed information matrix with elements:

J11 =
2n

α2
+

n∑

i=1

{
9

(2eλxi + 3α− 2)2
−

2

(eλxi + α− 1)2

−
8

(eλxi + 2α − 1)2

}
,

J12 =
n∑

i=1

2xie
λxi

{
3

(2eλxi + 3α− 2)2
−

1

(eλxi + α− 1)2

−
2

(eλxi + 2α − 1)2

}
,

J22 =
n

λ2
−

n∑

i=1

2x2i e
λxi

{
3α − 2

(2eλxi + 3α− 2)2
−

α− 1

(eλxi + α− 1)2

−
2α− 1

(eλxi + 2α− 1)2

}
.

5.3. Simulations study

We perform a simulation study to investigate the finite sample behavior
of the MLEs (α̂, λ̂) of the parameters (α, λ) and their asymptotic confidence
intervals based on normality. We simulated 10,000 random samples each of size
n from the GoWE distribution using the quantile function, see equation (4),

xi =
1

λ
ln

[
1 +

α

2

(√
8

1− ui
+ 1− 3

) ]
, i = 1, 2, . . . , n,

where u1, u2, . . . , un is a random sample from the uniform distribution over the
unit interval (n = 50, 100, 150, 200, 250, 300) from the GoWE distribution with
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Figure 7: Biases (upper panel) and MSEs (lower panel) of the MLEs
α̂ and λ̂.

true (α, λ) = (1, 2), (2, 1), (4, 6), (6, 4). Note that the first (last) two selected
values of (α, λ) represent decreasing (unimodal) shape of the p.d.f. of GoWE1
distribution. For each sample, the MLEs (α̂, λ̂) were computed using the nlm

(non-linear minimization) function in the R programming language (see [17]).

The evaluation of point estimation was performed based on the average bias
and average mean squared error (MSE) for each sample size. The biases and
MSEs of (α̂, λ̂) versus n are shown in Figure 7. The biases are positive. The
biases and MSEs decrease with increasing n.

The evaluation of interval estimation was performed based on the coverage
probability (CP) of 95% confidence intervals of each parameter and the average
width (AW) 95% confidence intervals of each parameter for each sample size.

The CPs and AWs of 95% CIs of α and λ versus n are shown in Figure
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Figure 8: PCs (upper panel) and AWs (lower panel) of 95% CIs of
α and λ.

8. This figure show that the coverage probabilities of the confidence intervals
are close to the nominal level of 95% and that the average confidence widths
decrease as the sample size increases, as one would expect.

6. Data analysis

Here, we provide three applications of real data sets to demonstrate the flexi-
bility and applicability of the GoWE distribution over many well known two-
parameter distributions. For all the following two-parameter distributions the
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support is x > 0 and the parameter values are α, λ > 0.

(1) Gamma distribution:

f1(x) =
λα

Γ(α)
xα−1 e−λx.

(2) Weibull distribution:

f2(x) = αλα xα−1 e−(λx)α .

(3) Exponentiated Exponential distribution: ([18]):

f3(x) = αλ e−λx(1− e−λx)α−1.

(4) Lomax distribution:

f4(x) = αλ (1 + λx)−α−1.

(5) Linear Failure Rate distribution:

f5(x) = (α+ λx) e−αx−λ
2
x2

.

(6) Exponentiated Rayleigh (Burr X) distribution: ([4]):

f6(x) = 2αλ2 x e−(λx)2(1− e−(λx)2)α−1.

(7) Exponential Power distribution ([5]):

f7(x) = αλα xα−1 exp[(λx)α − (e(λx)
α

− 1)].

(8) Double Exponential Power distribution ([6]):

f8(x) = αλαxα−1 exp{(λx)α + e(λx)
α

− exp[e(λx)
α

− 1]}.

(9) Chen distribution ([7]):

f9(x) = αλxα−1 exp[xα − λ(ex
α

− 1)].

(10) Generalized Lindley distribution ([9]):

f10(x) =
αλ2

1 + λ
(1 + x) e−λx

(
1−

1 + λ+ λx

1 + λ
e−λx

)α−1

.
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Figure 9: Histogram and e.h.r.f. of data set 1.

Note that the above distributions (1)-(5) have monotone h.r.f. and distri-
butions (6)-(10) have bathtub h.r.f.

Data set 1. This data set consists of 213 observations on the number of
successive failures of the air conditioning system of a fleet of 13 Boeing 720 jet
airplanes, see [19]. Its histogram and empirical hazard rate function (e.h.r.f.)
are shown in Figure 9. The e.h.r.f. shows decreasing shape.

Table 1 shows the estimates, their standard error (S.E.) of the parame-
ters, the estimated log-liklihood and two goodness-of-fit tests for six different
distributions which allow for decreasing h.r.f.

Table 1: MLEs (S.E.), estimated log-likelihood, Anderson-Darling (AD)
and Cramér-von Mises (CvM) goodness-of-fit tests for data set 1.

α̂ λ̂ AD CvM

Distribution (S.E.) (S.E.) ℓ(α̂, λ̂) (p-value) (p-value)

Gamma 0.922 0.010 -1178.291 1.124 0.199
(0.078) (0.001) (0.298) (0.269)

Weibull 0.925 0.011 -1177.585 0.825 0.128
(0.048) (0.001) (0.464) (0.466)

Exponentiated 0.927 0.010 -1178.402 1.409 0.275
Exponential (0.083) (0.001) (0.200) (0.159)
Lomax 6.075 0.002 -1176.418 0.467 0.061

(3.196) (0.001) (0.781) (0.811)
Generalized 0.462 0.013 -1181.698 4.197 0.762
Lindley (0.041) (0.001) (0.007) (0.009)
GoWE 0.377 0.003 -1175.950 0.461 0.055

(0.135) (0.001) (0.786) (0.846)
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Figure 10: P-P plots of competing distributions for data set 1.
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Data set 2. This data set represents the lowest 7-day average flows (in meter
cube per second) at gauging station La Parota during 1963–1999, see [20]. Its
histogram and e.h.r.f. are shown in Figure 11. The e.h.r.f. shows increasing
shape.

Figure 11: Histogram and e.h.r.f. of data set 2.

Table 2 shows the estimates, their standard error (S.E.) of the parame-
ters, the estimated log-liklihood and two goodness-of-fit tests for six different
distributions which allow for increasing h.r.f.

Table 2: MLEs (S.E.), estimated log-likelihood, Anderson-Darling (AD)
and Cramér-von Mises (CvM) goodness-of-fit tests for data set 2.

α̂ λ̂ AD CvM

Distribution (S.E.) (S.E.) ℓ(α̂, λ̂) (p-value) (p-value)

Gamma 4.241 0.267 -125.055 4.125 0.744
(0.950) (0.063) (0.008) (0.010)

Weibull 3.664 0.058 -114.202 1.658 0.246
(0.518) (0.003) (0.143) (0.193)

Exponentiated 3.803 0.123 -127.802 4.783 0.887
Exponential (0.940) (0.017) (0.004) (0.004)
Linear Failure Rate 0.002 0.007 -121.085 5.199 1.076

(0.004) (0.001) (0.002) (0.001)
Generalized 2.491 0.174 -124.470 4.197 0.762
Lindley (0.628) (0.022) (0.007) (0.009)
Gompertz-Weighted 702.216 0.364 -105.273 0.407 0.037
Exponential (645.515) (0.051) (0.841) (0.949)
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Figure 12: P-P plots of competing distributions for data set 2.
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Data set 3. This data set represents 60 times between failures (in 1000’s of
hours) of a 200-ton rear dump truck. Its histogram and e.h.r.f. are shown in
Figure 13. The e.h.r.f. shows bathtub shape.

Figure 13: Histogram and e.h.r.f. of data set 3.

Table 3 shows the estimates, their standard error (S.E.) of the parame-
ters, the estimated log-liklihood and two goodness-of-fit tests for six different
distributions which allow for bathtub hazard rate function.

Table 3: MLEs (S.E.), estimated log-likelihood, Anderson-Darling (AD)
and Cramér-von Mises (CvM) goodness-of-fit tests for data set 3.

α̂ λ̂ AD CvM

Distribution (S.E.) (S.E.) ℓ(α̂, λ̂) (p-value) (p-value)

Burr X 0.360 0.723 -37.877 0.611 0.116
(0.053) (0.085) (0.637) (0.513)

Exponential Power 0.719 0.793 -37.483 0.422 0.069
(0.076) (0.088) (0.826) (0.757)

Double 0.549 0.384 -39.320 0.812 0.134
Exponential Power (0.062) (0.039) (0.472) (0.442)
Chen 0.675 0.783 -37.770 0.438 0.065

(0.065) (0.103) (0.810) (0.785)
Generalized 0.927 1.898 -36.564 0.190 0.028
Lindley (0.160) (0.270) (0.993) (0.984)
Gompertz-Weighted 0.764 0.764 -36.447 0.146 0.019
Exponential (0.410) (0.285) (0.999) (0.998)

For all three data sets, Tables 1-3 show that the GoWE distribution has
the highest estimated log-likelihood, the smallest test statistic and largest p-
value of the two goodness-of-fit tests. Thus, we can conclude that the GoWE
distribution provides the best fit for thee data sets. This conclusion is also
supported by the Probability-Probability (P-P) plots in Figures 10-14.
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Figure 14: P-P plots of competing distributions for data set 3.
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