A NORM INEQUALITY FOR FUNCTIONS
OF $L^{p\left( .\right) }\left(\Omega \right)$ SPACES

Abstract

We prove an inequality in $L^{p\left( .\right) }\left(\Omega \right)$ that give a relation between norm of function and norm of function restriction to a partition of domain.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 33
Issue: 2
Year: 2020

DOI: 10.12732/ijam.v33i2.10

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] B. Amaziane, L. Pankratov, A. Piatnitski, Nonlinear flow through double porosity media in variable exponent Sobolev spaces, Nonlinear Anal. Real World Appl., 10, No 4 (2009), 2521-2530.
  2. [2] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkh¨auser (2013).
  3. [3] D. Lars, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer (2011).
  4. [4] L. Diening, M. Ruzicka, Calder´on-Zygmund operators on generalized Lebesgue spaces Lp(x) and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197-220.
  5. [5] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin (2000).
  6. [6] O. Kovacik, J. Rakosnık, On spaces Lp(x) and Wk, p(x), Czechoslovak Math. J., 41, No 16 (1991), 592-618.
  7. [7] P. Hasto. Local-to-global results in variable exponent spaces, Math. Res. Letters, 16, No 2 (2009), 263-278.
  8. [8] S. Levine, J. Stanich, Y. Chen, Image restoration via nonstandard diffusion, Dept. Math. Computer Science, Duquesne University, Technical Report 04-01 (2004).
  9. [9] X. Fan, D. Zhao, On the spaces Lp(x) and Wm, p(x), J. Math. Anal. Appl., 263, No 2 (2001), 424-446.