You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] B. Amaziane, L. Pankratov, A. Piatnitski, Nonlinear flow through double porosity media in variable exponent Sobolev spaces, Nonlinear Anal. Real World Appl., 10, No 4 (2009), 2521-2530.
[2] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkh¨auser (2013).
[3] D. Lars, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer (2011).
[4] L. Diening, M. Ruzicka, Calder´on-Zygmund operators on generalized Lebesgue spaces Lp(x) and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197-220.
[5] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin (2000).
[6] O. Kovacik, J. Rakosnık, On spaces Lp(x) and Wk, p(x), Czechoslovak Math. J., 41, No 16 (1991), 592-618.
[7] P. Hasto. Local-to-global results in variable exponent spaces, Math. Res. Letters, 16, No 2 (2009), 263-278.
[8] S. Levine, J. Stanich, Y. Chen, Image restoration via nonstandard diffusion, Dept. Math. Computer Science, Duquesne University, Technical Report 04-01 (2004).
[9] X. Fan, D. Zhao, On the spaces Lp(x) and Wm, p(x), J. Math. Anal. Appl., 263, No 2 (2001), 424-446.