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§Correspondence author



158 Kh.E. Abbasova, Y.T. Mehraliyev, E.I. Azizbayov

1. Introduction and Preliminaries

In the rectangular region DT : 0 ≤ x ≤ 1, 0 ≤ t ≤ T we consider inverse
boundary-value problem for the one-dimensional equation of motion of a ho-
mogeneous elastic beam [15]
utt(x, t) + uxxxx(x, t) + βuxx(x, t)

= p(t)u(x, t) + f(x, t), (x, t) ∈ DT , (1)

for the unknown functions u(x, t), p(t), with conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ 1, (2)

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, 0 ≤ t ≤ T, (3)

1
∫

0

g(x)u(x, t)dx = h(t), 0 ≤ t ≤ T, (4)

where T, β are positive integers, f(x, t), ϕ(x), ψ(x), g(x), and h(t) are known
functions of x ∈ [0, 1] and t ∈ [0, T ].

In many cases the practical requirements lead to the problems of determin-
ing the coefficients or the right hand side of a differential equation (ordinary
or in partial derivatives) from some known functional of its solution. Such
problems are called inverse problems of mathematical physics. The practical
importance of inverse problems is so great (they arise in various fields of human
activity, such as seismology, mineral exploration, biology, medicine, desalination
of seawater, movement of liquid in a porous medium, etc.) which puts them
a series of the most actual problems of modern mathematics. The presence
in the inverse problems of additional unknown functions requires that in the
complement to the boundary conditions that are natural for a particular class
of differential equations, impose some additional conditions - overdetermination
conditions. The basics of the theory and practice of studying inverse problems
of mathematical physics were established and developed in the fundamental
works of the outstanding scientists A.N. Tikhonov [23], M.M. Lavrent’ev [16],
V.K. Ivanov [11], and their followers.

Inverse problems associated with differential equations of various types,
have been studied by many papers and monographs, in particular [1, 3, 4, 6, 7,
9, 10, 13, 14, 17, 19, 20]. But the problem statement and the proof techniques
used in this paper are different from those presented in these works. The
technique used in this paper is based on the passing from the original inverse
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problem to the new equivalent one, the study of the solvability of the equivalent
problem, and then in the reverse transition to the original problem.

Moreover, the vibrations and wave movements of an elastic beam were in-
vestigated by B.S. Bardin [5], T.P. Goy [8], D.V. Kostin [15], Y.T. Mehraliyev
[2], Yu.A. Mitropolsky [18], J.M. Thompson [22], V.Z. Vlasov [24], and et al.

The simplest nonlinear model of the motion of a homogeneous beam is
described by the equation

∂2w

∂t2
+
∂4w

∂x4
+ k

∂2w

∂x2
+ αw + w3 = 0,

where w is beam deflection (after the displacements of the points of the midline
of the elastic beam located along the x-axis). Note that a similar equation also
arises in the theory of crystals, in which w is parameter of order [12].

We introduce the set of functions

C̃2,4(DT ) = {u(x, t) : u(x, t) ∈ C2(DT ), uxxxx(x, t) ∈ C(DT )}.

Definition 1. The pair {u(x, t), p(t)} defined in the domain DT is said to
be a classical solution of the problem (1)-(4), if the functions u(x, t) ∈ C̃2,4(DT )
and p(t) ∈ C[0, T ] satisfies Eq. (1), condition (2) on [0, 1], and the statements
(3)-(4) on the interval [0, T ].

Theorem 2. Suppose that f(x, t) ∈ C(DT ), ϕ(x), ψ(x) ∈ C[0, 1], g(x) ∈
L2(0, 1), h(t) ∈ C2[0, T ], and the conditions

1
∫

0

g(x)ϕ(x)dx = h(0),

1
∫

0

g(x)ψ(x)dx = h′(0)

hold. Then the problem of finding a classical solution of (1)-(4) is equivalent to
the problem of determining the functions u(x, t) ∈ C̃2,4(DT ) and p(t) ∈ C[0, T ]
from the (1)-(3), and satisfying the condition

h′′(t) +

1
∫

0

g(x)uxxxx(x, t)dx + β

1
∫

0

g(x)uxx(x, t)dx

= p(t)h(t) +

1
∫

0

g(x)f(x, t)dx, 0 ≤ t ≤ T. (5)
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Proof. Let {u(x, t), p(t)} be a classical solution of the problem (1)-(4). Dif-
ferentiating both sides of (4) twice with respect to t, gives

1
∫

0

g(x)ut(x, t)dx = h′(t),

1
∫

0

g(x)utt(x, t)dx = h′′(t), 0 ≤ t ≤ T. (6)

Multiplying both sides of (1) by a special function g(x) and integrating
gives, in turn,

d2

dt2

1
∫

0

g(x)u(x, t)dx +

1
∫

0

g(x)uxxxx(x, t)dx+ β

1
∫

0

g(x)uxx(x, t)dx

= p(t)

1
∫

0

g(x)u(x, t)dx +

1
∫

0

g(x)f(x, t)dx, 0 ≤ t ≤ T. (7)

Hence, taking into account (4) and (6), we conclude that condition (5) is
satisfied.

Now, assume that {u(x, t), p(t)} is the solution of problem (1)-(3), (5). Then
from (5), taking into account (7), we have

d2

dt2





1
∫

0

g(x)u(x, t)dx − h(t)





= p(t)





1
∫

0

g(x)u(x, t)dx − h(t)



 , 0 ≤ t ≤ T. (8)

By virtue of (2) and

1
∫

0

g(x)ϕ(x)dx = h(0),

1
∫

0

g(x)ψ(x)dx = h′(0),

we find
1
∫

0

g(x)u(x, 0)dx − h(0) =

1
∫

0

g(x)ϕ(x)dx − h(0) = 0,
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1
∫

0

g(x)ut(0, t)dx − h′(0) =

1
∫

0

g(x)ψ(x)dx − h′(0) = 0. (9)

From (8), taking into account (9), it is clear that the condition (4) is also
satisfied. The proof is complete.

2. Classical Solvability of Inverse Boundary-value Problem

We seek the first component u(x, t) of classical solution {u(x, t), p(t)} of the
problem (1)-(3), (5) in the form

u(x, t) =
∞
∑

k=1

uk(t) sinλkx, λk = kπ, (10)

where

uk(t) = 2

1
∫

0

u(x, t) sin λkxdx, k = 1, 2, ....

Then applying the formal scheme of the Fourier method, from (1) and (2)
we have

u′′k(t) + (λ4k − βλ2k)uk(t) = Fk(t;u, p), 0 ≤ t ≤ T ; k = 1, 2, ..., (11)

uk(0) = ϕk, u
′
k(0) = ψk, k = 1, 2, ..., (12)

where

Fk(t;u, p) = p(t)uk(t) + fk(t), fk(t) =

1
∫

0

f(x, t) sinλkxdx,

ϕk = 2

1
∫

0

ϕ(x) sin λkxdx, ψk = 2

1
∫

0

ψ(x) sin λkxdx, k = 1, 2, ....

Suppose that 0 < β < π2

2 . Solving the problem (11)-(12) gives

uk(t) = ϕk cosβkt+
1

βk
ψk sinβkt

+
1

βk

t
∫

0

Fk(τ ;u, p) sin βk(t− τ)dτ , k = 1, 2, . . . , (13)
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where

βk =
√

λ4
k
− βλ2

k
.

In order to determine the first component of the solution of the problem
(1)-(3), (5) we substitute uk(t) (k = 1, 2, ...) into (10) and obtain

u(x, t) =
∞
∑

k=1

{ϕk cos βkt+
1

βk
ψk sin βkt

+
1

βk

t
∫

0

Fk(τ ;u, p) sin βk(t− τ)dτ} sinλkx. (14)

Now, from (5), taking into account (10), we have

p(t) = [h(t)]−1{h′′(t)−
1
∫

0

g(x)f(x, t)dx

+
∞
∑

k=1

(λ4k − βλ2k)uk(t)

1
∫

0

g(x) sin λkxdx}. (15)

In this way to obtain the equation for the second component of the solution
to the problem (1) - (3), (5) we substitute expression (13) into (17) and get

p(t) = [h(t)]−1{h′′(t)−
1
∫

0

g(x)f(x, t)dx

+
∞
∑

k=1

(λ4k − βλ2k)[ϕk cos βkt+
1

βk
ψk sin βkt

+
1

βk

t
∫

0

Fk(τ ;u, p) sin βk(t− τ)dτ ]

1
∫

0

g(x) sin λkxdx}. (16)

Thus, finding the solution of problem (1) - (3), (5) is reduced to the finding
solution of system (14), (16) with respect to unknown functions u(x, t) and p(t).

The following lemma plays an important role in studying the uniqueness of
the solution to problem (1)-(3), (5).

Lemma 3. If {u(x, t), p(t)} is a solution of (1)-(3), (5), then the functions

uk(t) = 2

1
∫

0

u(x, t) sin λkxdx, k = 1, 2, ...,

satisfy the system (13) on the interval [0, T ].
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Proof. Let {u(x, t), p(t)} be any solution to problem (1)-(3), (5). Multiply-
ing both sides of the Eq. (1) by a function 2 sin λkx (k = 1, 2, ...), integrating
by parts, and using the relations

2

1
∫

0

utt(x, t) sinλkxdx

=
d2

dt2



2

1
∫

0

u(x, t) sin λkxdx



 = u′′k(t), k = 1, 2, ...,

2

1
∫

0

uxx(x, t) sin λkxdx

= −λ2k



2

1
∫

0

u(x, t) sin λkxdx



 = −λ2kuk(t), k = 1, 2, ...,

2

1
∫

0

uxxxx(x, t) sinλkxdx

= λ4k



2

1
∫

0

u(x, t) cos λkxdx



 = λ4kuk(t), k = 1, 2, ...,

we deduce that satisfies (11).
Similarly, from (2) we obtain that condition (12) is satisfied. Thus, the

system of functions uk(t) (k = 1, 2, ...) is a solution to problem (11), (12). From
this it follows directly that the functions uk(t) (k = 1, 2, ...) satisfy the system
(13) on [0, T ]. The lemma is proved.

Obviously, if uk(t) = 2
1
∫

0

u(x, t) sin λkxdx, k = 1, 2, ... is a solution to system

(13), then the pair {u(x, t), p(t)} of functions u(x, t) =
∞
∑

k=1

uk(t) sinλkx and p(t)

is also a solution to system (14), (16).
It follows from Lemma 3 that

Remark 4. Suppose that system (14) and (16) has a unique solution.
Then the problem (1)-(3), (5), can’t have more than one solution, i.e. if problem
(1)-(3), (7) has a solution, then it is unique.
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Now, to study problem (1)-(3), (5), we consider the following spaces.

Denote by B5
2,T a set of all functions of the form

u(x, t) =
∞
∑

k=1

uk(t) sinλkx, λk = πk,

considered in DT where each of the function uk(t) (k = 1, 2, ...) is continuous
on [0, T ] and

JT (u) ≡
(

∞
∑

k=1

(λ2k ‖u1(t)‖C[0,T ])
2

) 1

2

< +∞.

The norm in this set is defined as follows

‖u(x, t)‖B5

2,T
= J(u).

Next we denote by E5
T the space of vector-functions z(x, t) = {u(x, t), p(t)},

which u(x, t) ∈ B5
2,T , p(t) ∈ C[0, T ].

The norm in the set E5
T will be

‖z(x, t)‖E5

T
= ‖u(x, t)‖B5

2,T
+ ‖p(t)‖C[0,T ] .

It is known that B5
2,T and E5

T are the Banach spaces [21].

We now consider the operator

Φ(u, p) = {Φ1(u, p),Φ2(u, p)},

in the space E5
T , where

Φ1(u, p) = ũ(x, t) ≡
∞
∑

k=1

ũk(t) sinλkx, Φ2(u, p) = p̃(t),

and the functions ũk(t) (k = 1, 2, ...) and p̃(t) are equal to the right-hand sides
of (13) and (16), respectively.

Then we find

(

∞
∑

k=1

(λ5k ‖ũk(t)‖C[0,T ])
2

)
1

2

≤ 2

(

∞
∑

k=1

(λ5k |ϕk|)2
)

1

2

+

(

∞
∑

k=1

(λ3k |ψk|)2
) 1

2

+
√
T





T
∫

0

∞
∑

k=1

(λ3k |fk(τ)|)2dτ





1

2
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+T ‖p(t)‖C[0,T ]

(

∞
∑

k=1

(λ5k ‖uk(t)‖C[0,T ])
2

) 1

2

, (17)

‖p̃(t)‖C[0,T ] ≤
∥

∥[h(t)]−1
∥

∥

C[0,T ]











∥

∥

∥

∥

∥

∥

h′′(t)−
1
∫

0

g(x)f(x, t)dx

∥

∥

∥

∥

∥

∥

C[0,T ]

+

(

∞
∑

k=1

λ−2
k

) 1

2

(1 + β)





(

∞
∑

k=1

(λ5k |ϕk|)2
) 1

2

+

(

∞
∑

k=1

(λ3k |ψik|)2
)

1

2

+
√
T





T
∫

0

∞
∑

k=1

(λ3k |fk(τ)|)2dτ





1

2

+ T ‖p(t)‖C[0,T ]

(

∞
∑

k=1

(λ5k ‖uk(t)‖C[0,T ])
2

)
1

2



 ‖g(x)‖L2(0,1)







. (18)

Suppose that the data of problem (1)-(3), (5) satisfy the conditions

(A1) ϕ(x) ∈ C4[0, 1], ϕ(5)(x) ∈ L2(0, 1),
ϕ(0) = ϕ(1) = ϕ′′(0) = ϕ′′(1) = ϕ(4)(0) = ϕ(4)(1) = 0;

(A2) ϕ(x) ∈ C4[0, 1], ψ′′′(x) ∈ L2(0, 1),
ψ(0) = ψ(1) = ψ′′(0) = ψ′′(1) = 0;

(A3) f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ), and f(0, t) =
f(1, t) = fxx(0, t) = fxx(1, t) = 0, 0 ≤ t ≤ T ;

(A4) 0 < β < π2

2 , g(x) ∈ L2(0, 1), h(t) ∈ C2[0, T ],
h(t) 6= 0, 0 ≤ t ≤ T.

Then from relations (17) and (18), correspondingly we have

(

∞
∑

k=1

(λ5k ‖ũk(t)‖C[0,T ])
2

) 1

2

≤ 2
∥

∥

∥
ϕ(5)(x)

∥

∥

∥

L2(0,1)
+
∥

∥ψ′′′(x)
∥

∥

L2(0,1)
+

√
T ‖fxxx(x, t)‖L2(DT )

+T ‖p(t)‖C[0,T ]

(

∞
∑

k=1

(λ5k ‖uk(t)‖C[0,T ])
2

) 1

2

, (19)



166 Kh.E. Abbasova, Y.T. Mehraliyev, E.I. Azizbayov

‖p̃(t)‖C[0,T ] ≤
∥

∥[h(t)]−1
∥

∥

C[0,T ]











∥

∥

∥

∥

∥

∥

h′′(t)−
1
∫

0

g(x)f(x, t)dx

∥

∥

∥

∥

∥

∥

C[0,T ]

+

(

∞
∑

k=1

λ−2
k

) 1

2

(1 + β)

[

∥

∥

∥ϕ(5)(x)
∥

∥

∥

L2(0,1)
+
∥

∥ψ′′′(x)
∥

∥

L2(0,1)

+
√
T ‖fxxx(x, t)‖L2(DT ) + T ‖p(t)‖C[0,T ]

×
(

∞
∑

k=1

(λ5k ‖uk(t)‖C[0,T ])
2

) 1

2



 ‖g(x)‖L2(0,1)







. (20)

We denote by

A1(T ) = 2
∥

∥

∥
ϕ(5)(x)

∥

∥

∥

L2(0,1)
+
∥

∥ψ′′′(x)
∥

∥

L2(0,1)
+

√
T ‖fxxx(x, t)‖L2(DT ) ,

B1(T ) = T,

A2(T ) =
∥

∥[h(t)]−1
∥

∥

C[0,T ]











∥

∥

∥

∥

∥

∥

h′′(t)−
1
∫

0

g(x)f(x, t)dx

∥

∥

∥

∥

∥

∥

C[0,T ]

+

(

∞
∑

k=1

λ−2
k

) 1

2

(1 + β)[
∥

∥

∥ϕ(5)(x)
∥

∥

∥

L2(0,1)

+
∥

∥ψ′′′(x)
∥

∥

L2(0,1)
+

√
T ‖fxxx(x, t)‖L2(DT )] ‖g(x)‖L2(0,1)

},

B2(T ) =
∥

∥[h(t)]−1
∥

∥

C[0,T ]

(

∞
∑

k=1

λ−2
k

) 1

2

(1 + β)T ‖g(x)‖L2(0,1)
,

and rewrite (19), (20) as

‖ũ(x, t)‖B5

2,T
≤ A1(T ) +B1(T ) ‖p(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
, (21)

‖p̃(t)‖C[0,T ] ≤ A2(T ) +B2(T ) ‖p(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
. (22)

From the inequalities (21) and (22), we conclude

‖ũ(x, t)‖B5

2,T
+ ‖p̃(t)‖C[0,T ]
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≤ A(T ) +B(T ) ‖p(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
, (23)

where

A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

Thus, the following assertion is valid.

Theorem 5. If conditions (A1)− (A4) and

B(T )(A(T ) + 2)2 < 1, (24)

hold, then problem (1)-(3), (5) has a unique solution in the ballK = KR(||z||E5

T
≤

R = A(T ) + 2) of the space E5
T .

Proof. In the space E5
T , consider the equation

z = Φz, (25)

where z = {u, p}, the components Φi(u, p), i = 1, 2, of operator Φ(u, p), defined
by the right sides of equations (14) and (16), respectively.

Now, consider the operator Φ(u, p) in the ball K = KR of the space E5
T .

Similarly to (23), we obtain that for any z = {u, p}, z1 = {u1, p1}, and z2 =
{u2, p2} ∈ KR the following inequalities hold:

‖Φz‖E5

T
≤ A(T ) +B(T ) ‖p(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
, (26)

‖Φz1 − Φz2‖E5

T
≤ B(T )R

×(‖p1(t)− p2(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖B5

2,T
). (27)

Then by (24), from (14) and (16) it follows that the operator Φ acts in the
ball K = KR, and satisfy the conditions of the contraction mapping principle.
Therefore the operator Φ has a unique fixed point {u, p} in the ball K = KR,
which is a solution of equation (25), i.e. the pair {u, p} is the unique solution
of the systems (14), (16) in K = KR.

Then the function u(x, t) as an element of space B5
2,T is continuous and has

continuous derivatives ux(x, t), uxx(x, t), uxxx(x, t), and uxxxx(x, t) in DT .

From (9) it is easy to see that
(

∞
∑

k=1

(λk
∥

∥u′′ik(t)
∥

∥

C[0,T ]
)2

) 1

2

≤ (1 + β)
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×
(

∞
∑

k=1

(λ5k ‖uk(t)‖C[0,T ])
2

) 1

2

+
∥

∥

∥‖fx(x, t) + p(t)ux(x, t)‖C[0,T ]

∥

∥

∥

L2(0,1)
.

Hence, we conclude that the function utt(x, t) is continuous in the domain
DT .

Further, it is easy to verify that equation (1), and conditions (2), (3), and
(5) are satisfied in the usual sense. Consequently, {u(x, t), p(t)} is a solution of
(1)-(3), (5), and by Lemma 3 it is unique in the ball K = KR. The proof is
complete.

From Theorem 2 and Theorem 5, it implies the unique solvability of the
original problem (1)-(4).

In summary, we conclude the following result.

Theorem 6. Suppose that all assumptions of Theorem 5, and

1
∫

0

g(x)ϕ(x)dx = h(0),

1
∫

0

g(x)ψ(x)dx = h′(0)

hold. Then problem (1)-(4) has a unique classical solution in the ball K =
KR(||z||E5

T
≤ R = A(T ) + 2).
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[13] J. Janno, A. Šeletski, Reconstruction of coefficients of higher order nonlin-
ear wave equations by measuring solitary waves, Wave Motion, 52 (2015),
15-25.

[14] S.I. Kabanikhin, Inverse and Ill-posed Problems, Theory and Applications,
De Gruyter, Berlin (2012).

[15] D.V. Kostin, Analysis scheme for bimodal deflections of a weakly inhomo-
geneous elastic beam, Doklady Mathematics, 418 (2008), 46-50.



170 Kh.E. Abbasova, Y.T. Mehraliyev, E.I. Azizbayov

[16] M.M. Lavrent’ev, V.G. Vasil’ev, and V.G. Romanov, Multidimensional In-

verse Problems for Differential Equations, Lecture Notes in Mathematics,
Berlin (1970).

[17] Y.T. Mehraliyev, On an inverse boundary-value problem for a second order
elliptic equation with integral condition, Visnyk of the Lviv University, Ser.
Mechanics and Mathematics, 77 (2012), 145-156.

[18] Yu.O. Mitropolsky, B.I. Moseenkov, Study of Oscillations in Systems with

Distributed Parameters, Publishing House of Kyiv University, Kyiv (1961)
(in Ukrainian).

[19] A.I. Prilepko, D.G. Orlovsky, and I.A. Vasin, Methods for Solving Inverse

Problems in Mathematical Physics, Marcel Dekker, New York (2000).

[20] S.G. Pyatkov, On some classes of inverse problems for parabolic equations,
Journal of Inverse and Ill-posed Problems, 18 (2011), 917-934.

[21] I. Tekin, Y.T. Mehraliyev, and M.I. Ismailov, Existence and uniqueness
of an inverse problem for nonlinear Klein-Gordon equation, Mathematical

Methods in the Applied Sciences, 42 (2019), 3739-3753.

[22] J.M.T. Thompson, A General Theory of Elastic Stability, John Wiley &
Sons (1973).

[23] A.N. Tikhonov, On stability of inverse problems, Doklady Akademii Nauk

SSSR, 39 (1943), 195-198 (in Russian).

[24] V.Z. Vlasov, N.N. Leont’ev, Beams, Plates and Covers on the Elastic Basis,
Moscow (1960).


