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1. Introduction

Throughout in this paper, let N , R and C be the sets of natural numbers, real
numbers and complex numbers, respectively, and let

N := {1, 2, 3, ...}, N0 := {0, 1, 2, 3, ...} = N ∪ {0}.

The classical beta function B(m,n) is defined by (see [10], see also [11])

B(m,n) =

∫ 1

0
xm−1 (1− x)n−1dx (1)

(ℜ(m) > 0, ℜ(n) > 0).

Due to diverse applications of beta function in a wide range of engineering
and sciences, a number of researchers have introduced and investigated several
extensions of B(m,n) (see, for example, [1], [2], [7], [9] and [12]).

In 1997, Chaudhry et al. [2] introduced a useful generalization of (1) by

Bp(m,n) =

∫ 1

0
xm−1 (1− x)n−1 exp

[

−
p

x(1− x)

]

dx (2)

(ℜ(m) > 0, ℜ(n) > 0, ℜ(p) > 0).

It is easily seen that for p = 0, (2) reduces to (1). By using Bp(m,n), Chaudhry
et al. [3] generalized the Gauss hypergeometric function and the confluent
hypergeometric function, respectively, as follows:

Fp(c1, c2; c3; z) =
∞
∑

n=0

(c1)n Bp(c2 + n, c3 − c2)

B(c2, c3 − c2)

zn

n!
(3)

(p ≥ 0, |z| < 1, ℜ(c3) > ℜ(c2) > 0)

and

Φp(c2; c3; z) =

∞
∑

n=0

Bp(c2 + n, c3 − c2)

B(c2, c3 − c2)

zn

n!
(4)

(p ≥ 0, ℜ(c3) > ℜ(c2) > 0).

They also gave the following Euler’s type integral representations:

Fp(c1, c2; c3; z) =
1

B(c2, c3 − c2)
(5)

×

∫ 1

0
xc2−1 (1− x)c3−c2−1 (1− zx)−c1 exp

[

−
p

x(1− x)

]

dx

(p ≥ 0, | arg(1− z)| < π, ℜ(c3) > ℜ(c2) > 0)



A STUDY OF EXTENDED BETA, GAUSS... 3

and

Φp(c2; c3; z) =
1

B(c2, c3 − c2)
(6)

×

∫ 1

0
xc2−1 (1− x)c3−c2−1 exp

[

zx−
p

x(1− x)

]

dx

(p ≥ 0, ℜ(c3) > ℜ(c2) > 0).

Recently, Shadab et al. [12] defined the following generalization of beta
function:

Bp
α(m,n) =

∫ 1

0
xm−1 (1− x)n−1 Eα

[

−
p

x(1− x)

]

dx (7)

(α ∈ R+
0 , ℜ(p) > 0),

where Eα(t) is the classical Mittag-Leffler function defined by (see [6])

Eα(t) =
∞
∑

k=0

tk

Γ(1 + αk)
(t ∈ C and α ≥ 0). (8)

They also investigated some interesting properties of Bp
α(m,n) in [12]. The

main motive of this paper is to introduce a further extension of beta function
by making use of the multi-index Mittag-Leffler function and also to present a
new generalization of Gauss and confluent hypergeometric functions.

The multi-index Mittag-Leffler function E( 1
ai

),(bi)
(t) is defined as follows (see

[4], [5], see also [8]):

E( 1
ai

),(bi)
(t) =

∞
∑

k=0

tk

Γ(b1 +
k
a1
) · · · Γ(bs +

k
as
)
, (9)

where s > 1 be an integer, a1, ..., as > 0 and b1, ..., bs be arbitrary real numbers.
It is easily seen that, for s = 2, if we set 1

a1
= α, 1

a2
= 0, and b1 = b2 = 1

in (9), then this multi-index Mittag-Leffler function reduces to the classical
Mittag-Leffler function Eα(t).

2. A new type of extended beta function

In this section, we consider the following extension of beta function by making
use of the multi-index Mittag-Leffler function E( 1

ai
),(bi)

(t):

B(a1,··· ,as,b1,··· ,bs)
p (m,n) =

∫ 1

0
xm−1 (1− x)n−1 E( 1

ai
),(bi)

[

−
p

x(1− x)

]

dx (10)
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(ℜ(m) > 0, ℜ(n) > 0, ai > 0, bi ∈ R , p ≥ 0).

For s = 2, if we set 1
a1

= α, 1
a2

= 0, and b1 = b2 = 1 in (10) then we get the
extended beta function defined by Shadab et al. [12].

Furthermore, we can consider the following variations in (10):

The multi-index Mittag-Leffler function E( 1
ai

),(bi)
(t) have the under men-

tioned connections with Wright hypergeometric function pΨq(t) and Fox H-
function H

m,n
p,q (t) (see for details [4]):

E( 1
ai

),(bi)
(t) = 1Ψs





(1, 1)

(bi,
1
ai
)
s

1

| t



 (11)

and

E( 1
ai

),(bi)
(t) = H

1,1
1,s+1



−t |

(0, 1)

(0, 1), (1− bi,
1
ai
)
s

1



 . (12)

Therefore, our newly extended beta function given in (10), is easily converted
in terms of Wright hypergeometric function and Fox H-function as follows:

B(a1,··· ,as,b1,··· ,bs)
p (m,n)

=

∫ 1

0
xm−1 (1− x)n−1

1Ψs





(1, 1)

(bi,
1
ai
)
s

1

| −
p

x(1− x)



 dx (13)

and

B(a1,··· ,as,b1,··· ,bs)
p (m,n)

=

∫ 1

0
xm−1 (1− x)n−1 H

1,1
1,s+1





p

x(1− x)
|

(0, 1)

(0, 1), (1− bi,
1
ai
)
s

1



 dx. (14)

Integral representation of B
(a1,··· ,as,b1,··· ,bs)
p (m,n)

Theorem 1. For ai > 0, bi ∈ R and p ≥ 0, we have the following integral

representations of B
(a1,··· ,as,b1,··· ,bs)
p (m,n):

B(a1,··· ,as,b1,··· ,bs)
p (m,n) = 2

∫ π
2

0
cos2m−1 t sin2n−1 t

×E( 1
ai

),(bi)
(−p sec2 t csc2 t)dt; (15)
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B(a1,··· ,as,b1,··· ,bs)
p (m,n) =

∫ ∞

0

wm−1

(1 + w)m+n

× E( 1
ai

),(bi)

[

−p

(

2 + w +
1

w

)]

dw; (16)

B(a1,··· ,as,b1,··· ,bs)
p (m,n) = 21−m−n

∫ 1

−1
(1 + w)m−1 (1− w)n−1

× E( 1
ai

),(bi)

[

−
4p

(1− w2)

]

dw. (17)

Proof. On setting x = cos2 t, x = w
1+w

and x = 1+w
2 in (10) yields, respec-

tively, the integral representations (15)–(17).

3. Properties of extended beta function B
(a1,··· ,as,b1,··· ,bs)
p (m,n)

This section deals with some basic properties of our newly introduced beta

function B
(a1,··· ,as,b1,··· ,bs)
p (m,n).

Theorem 2. The following result holds true for extended beta function

B
(a1,··· ,as,b1,··· ,bs)
p (m,n):

B(a1,··· ,as,b1,··· ,bs)
p (m,n) =

l
∑

s=0

(

l

s

)

B(a1,··· ,as,b1,··· ,bs)
p (m+ s, n+ l − k), (18)

where l ∈ N0.

Proof. From (10), we have

B(a1,··· ,as,b1,··· ,bs)
p (m,n) =

∫ 1

0
xm−1 (1− x)n−1{x+ (1− x)}

× E( 1
ai

),(bi)

[

−
p

x(1− x)

]

dx,

B(a1,··· ,as,b1,··· ,bs)
p (m,n) = B(a1,··· ,as,b1,··· ,bs)

p (m+ 1, n)

+B(a1,··· ,as,b1,··· ,bs)
p (m,n+ 1). (19)

Again, applying the same argument in the right side of (19), we get

B(a1,··· ,as,b1,··· ,bs)
p (m,n) = B(a1,··· ,as,b1,··· ,bs)

p (m+ 2, n)
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+2B(a1,··· ,as,b1,··· ,bs)
p (m+ 1, n + 1) +B(a1,··· ,as,b1,··· ,bs)

p (m,n+ 2),

continuing this process, by induction, we obtain the desired result.

Theorem 3. The following result holds true for extended beta function

B
(a1,··· ,as,b1,··· ,bs)
p (m,n):

B(a1,··· ,as,b1,··· ,bs)
p (m, 1− n) =

∞
∑

k=0

(n)k
k!

B(a1,··· ,as,b1,··· ,bs)
p (m+ k, 1). (20)

Proof. On using (10) in the left side of (20), we get

B(a1,··· ,as,b1,··· ,bs)
p (m, 1− n) =

∫ 1

0
xm−1 (1− x)−n

× E( 1
ai

),(bi)

[

−
p

x(1− x)

]

dx

=

∫ 1

0
xm−1

∞
∑

k=0

(n)k xk

k!
E( 1

ai
),(bi)

[

−
p

x(1− x)

]

dx.

Now interchanging the order of integration and summation in the above expres-
sion and then upon using (10), we arrive at our claimed result.

Theorem 4. The following result holds true for extended beta function

B
(a1,··· ,as,b1,··· ,bs)
p (m,n):

B(a1,··· ,as,b1,··· ,bs)
p (m,n) =

∞
∑

k=0

B(a1,··· ,as,b1,··· ,bs)
p (m+ k, n + 1). (21)

Proof. This theorem can be established with the help of (10) by writing

(1− x)n−1 = (1− x)n
∞
∑

k=0

xk. We omit the details.

4. The extended beta distribution

In this section, we define the following new extended beta distribution as an
application of our extended beta function:
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f(x) =











1

B
(a1,··· ,as,b1,··· ,bs)
p (α,β)

xα−1 (1− x)β−1 E( 1
ai

),(bi)

[

− p
x(1−x)

]

(0 < x < 1),
0, otherwise

(22)

(α, β ∈ R, ai > 0, bi ∈ R, p ≥ 0).

Next, we have presented here some fundamental properties of our extended
beta distribution (22).

For n ∈ R, the nth moment of X is given by

E(Xn) =
B

(a1,··· ,as,b1,··· ,bs)
p (α+ n, β)

B
(a1,··· ,as,b1,··· ,bs)
p (α, β)

(23)

(α, β ∈ R, ai > 0, bi ∈ R, p ≥ 0).

The particular case of (23) for n = 1 yields the mean of our extended beta
distribution

E(X) =
B

(a1,··· ,as,b1,··· ,bs)
p (α+ 1, β)

B
(a1,··· ,as,b1,··· ,bs)
p (α, β)

. (24)

The variance of our extended beta distribution is defined by

V ar(X) = E(X2)− [E(X)]2,

V ar(X) =
B

(a1,··· ,as,b1,··· ,bs)
p (α+ 2, β)

B
(a1,··· ,as,b1,··· ,bs)
p (α, β)

−

[

B
(a1,··· ,as,b1,··· ,bs)
p (α+ 1, β)

B
(a1,··· ,as,b1,··· ,bs)
p (α, β)

]2

. (25)

The coefficient of variation of our introduced distribution (which is defined
as the ratio of the standard deviation and mean) can be expressed as

C.V =

√

√

√

√

B
(a1,··· ,as,b1,··· ,bs)
p (α+ 2, β) B

(a1,··· ,as,b1,··· ,bs)
p (α, β)

[B
(a1,··· ,as,b1,··· ,bs)
p (α+ 1, β)]2

− 1. (26)

The moment generating function (m.g.f) about origin of our extended beta
distribution is given by
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MX(t) =
∞
∑

r=0

tr

r!
E(Xr),

MX(t) =
1

B
(a1,··· ,as,b1,··· ,bs)
p (α, β)

∞
∑

r=0

B(a1,··· ,as,b1,··· ,bs)
p (α+ r, β)

tr

r!
. (27)

The characteristic function of the proposed distribution can be calculated
as follows:

E(eitx) =

∞
∑

r=0

irtr

r!
E(Xr),

E(eitx) =
1

B
(a1,··· ,as,b1,··· ,bs)
p (α, β)

∞
∑

r=0

B(a1,··· ,as,b1,··· ,bs)
p (α+ r, β)

irtr

r!
. (28)

The cumulative distribution function of our extended beta distribution (22)
can be expressed as

F (x) = P [X < x] =

∫ x

0
f(x)dx,

F (x) =
B

(a1,··· ,as,b1,··· ,bs)
p,x (α, β)

B
(a1,··· ,as,b1,··· ,bs)
p (α, β)

, (29)

where B
(a1,··· ,as,b1,··· ,bs)
p,x (α, β) denotes the incomplete extended beta function

defined by

B(a1,··· ,as,b1,··· ,bs)
p,x (α, β) =

∫ x

0
xα−1 (1− x)β−1 E( 1

ai
),(bi)

[

−
p

x(1− x)

]

dx.

The reliability function (which is simply the complement of the cumulative
distribution function) of our newly introduced distribution is given by

R(x) = P [X ≥ x] = 1− F (x) =

∫ ∞

x

f(x)dx,

R(x) =
B

(a1,··· ,as,b1,··· ,bs)
p,x (α, β)

B
(a1,··· ,as,b1,··· ,bs)
p (α, β)

, (30)

where B
(a1,··· ,as,b1,··· ,bs)
p,x (α, β) is the incomplete extended beta function defined

by

B(a1,··· ,as,b1,··· ,bs)
p,x (α, β) =

∫ ∞

x

xα−1 (1− x)β−1 E( 1
ai

),(bi)

[

−
p

x(1− x)

]

dx.
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5. Extended hypergeometric functions and their associated

properties

In this section, we present the following extensions of Gauss and confluent hy-
pergeometric functions by making use of our extended beta function

B
(a1,··· ,as,b1,··· ,bs)
p (α, β):

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; t) =

∞
∑

l=0

(c1)l B
(a1,··· ,as,b1,··· ,bs)
p (c2 + l, c3 − c2)

B(c2, c3 − c2)

tl

l!

(31)

(p ≥ 0, |t| < 1, ℜ(c3) > ℜ(c2) > 0, ai > 0, bi ∈ R)

and

Φ(a1,··· ,as,b1,··· ,bs)
p (c2; c3; t) =

∞
∑

l=0

B
(a1,··· ,as,b1,··· ,bs)
p (c2 + l, c3 − c2)

B(c2, c3 − c2)

tl

l!
(32)

(p ≥ 0, ℜ(c3) > ℜ(c2) > 0, ai > 0, bi ∈ R).

Remark. For s = 2, with 1
a1

= 1, 1
a2

= 0, and b1 = b2 = 1, (31) and
(32) reduces to the known extensions of Gauss and confluent hypergeometric
functions defined by Chaudhry et al. [3].

Theorem 5. The following integral representations of our extended Gauss

and confluent hypergeometric functions holds true:

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; t) =

1

B(c2, c3 − c2)

×

∫ 1

0
xc2−1 (1− x)c3−c2−1 (1− tx)−c1E( 1

ai
),(bi)

[

−
p

x(1− x)

]

dx (33)

(p ≥ 0, | arg(1− t)| < π, ℜ(c3) > ℜ(c2) > 0, ai > 0, bi ∈ R)

and

Φ(a1,··· ,as,b1,··· ,bs)
p (c2; c3; t) =

1

B(c2, c3 − c2)

×

∫ 1

0
xc2−1 (1− x)c3−c2−1 etxE( 1

ai
),(bi)

[

−
p

x(1− x)

]

dx (34)

(p ≥ 0, ℜ(c3) > ℜ(c2) > 0, ai > 0, bi ∈ R).
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Proof. The above integral representations can be easily derived by using
the integral representation of our extended beta function (10) in the right sides
of (31) and (32), respectively.

Theorem 6. The following differential formulas for our extended Gauss

and confluent hypergeometric functions holds true:

dk

dtk

{

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; t)

}

=
(c1)k(c2)k

(c3)k

×F (a1,··· ,as,b1,··· ,bs)
p (c1 + k, c2 + k; c3 + k; t) (35)

(p ≥ 0, ai > 0, bi ∈ R, k ∈ N0)

and

dk

dtk

{

Φ(a1,··· ,as,b1,··· ,bs)
p (c2; c3; t)

}

=
(c2)k
(c3)k

×Φ(a1,··· ,as,b1,··· ,bs)
p (c2 + k; c3 + k; t) (36)

(p ≥ 0, ai > 0, bi ∈ R, k ∈ N0).

Proof. On differentiating (31) with respect to t, we get
d

dt

{

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; t)

}

=
∞
∑

l=1

(c1)l B
(a1,··· ,as,b1,··· ,bs)
p (c2 + l, c3 − c2)

B(c2, c3 − c2)

tl−1

(l − 1)!
.

On replacing l by l + 1, we have
d

dt

{

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; t)

}

=
∞
∑

l=0

(c1)l+1 B
(a1,··· ,as,b1,··· ,bs)
p (c2 + l + 1, c3 − c2)

B(c2, c3 − c2)

tl

l!
.

Now by using B(c2, c3 − c2) =
c3
c2
B(c2 +1, c3 − c2) and (c1)l+1 = c1(c1 +1)l, we

get
d

dt

{

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; t)

}

=
c1c2

c3

×

∞
∑

l=0

(c1 + 1)l B
(a1,··· ,as,b1,··· ,bs)
p (c2 + l + 1, c3 − c2)

B(c2 + 1, c3 − c2)

tl

l!
. (37)

=
c1c2

c3
F (a1,··· ,as,b1,··· ,bs)
p (c1 + 1, c2 + 1; c3 + 1; t).
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Further differentiating (37) with respect to t, we get

d2

dt2

{

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; t)

}

=
c1(c1 + 1)c2(c2 + 1)

c3(c3 + 1)

×F (a1,··· ,as,b1,··· ,bs)
p (c1 + 2, c2 + 2; c3 + 2; t).

Continuing this process, by induction we obtain our claimed result (35).
Similarly we can establish the result (36).

Theorem 7. The following transformation formulas for our extended

Gauss and confluent hypergeometric functions holds true:

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; t) = (1− t)−c1

×F (a1,··· ,as,b1,··· ,bs)
p

(

c1, c3 − c2; c2;−
t

(1− t)

)

(38)

(p ≥ 0, ai > 0, bi ∈ R)

and

Φ(a1,··· ,as,b1,··· ,bs)
p (c2; c3; t) = et Φ(a1,··· ,as,b1,··· ,bs)

p (c3 − c2; c3;−t) (39)

(p ≥ 0, ai > 0, bi ∈ R).

Proof. On replacing x by1−x in (33) and then by using [1− t(1−x)]−c1 =

(1− t)−c1

[

1 + t
1−t

x
]−c1

, we obtain

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; t) =

(1− t)−c1

B(c2, c3 − c2)

×

∫ 1

0
xc3−c2−1 (1− x)c2−1

(

1 +
t

1− t
x

)−c1

E( 1
ai

),(bi)

[

−
p

x(1− x)

]

dx,

which further on using (33), yields the needed result (38). In a similar way, we
can establish (39).

Theorem 8. The following summation formula for our extended Gauss

hypergeometric function holds true:

F (a1,··· ,as,b1,··· ,bs)
p (c1, c2; c3; 1) =

B
(a1,··· ,as,b1,··· ,bs)
p (c2, c3 − c1 − c2)

B(c2, c3 − c2)
(40)

(p ≥ 0, ai > 0, bi ∈ R, ℜ(c3 − c1 − c2) > 0).
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Proof. On putting t = 1 in (33) and then by using (10), we get our required
result (40).

Theorem 9. The following generating function for our extended Gauss

hypergeometric function holds true:
∞
∑

l=0

(c)l F
(a1,··· ,as,b1,··· ,bs)
p (c1 + l, c2; c3; t)

xl

l!
= (1− x)−c1 (41)

×F (a1,··· ,as,b1,··· ,bs)
p

(

c1, c2; c3;
t

1− x

)

(p ≥ 0, ai > 0, bi ∈ R, |x| < 1).

Proof. Using (31) on the left side of (41), we have
∞
∑

l=0

(c)l F
(a1,··· ,as,b1,··· ,bs)
p (c1 + l, c2; c3; t)

xl

l!

=

∞
∑

l=0

(c)l

[

∞
∑

m=0

(c1 + l)m B
(a1,··· ,as,b1,··· ,bs)
p (c2 +m, c3 − c2)

B(c2, c3 − c2)

tm

m!

]

xl

l!
.

Now by using the identity (c)m(c+m)l = (c)l(c+ l)m, in the above expression,
we obtain

∞
∑

l=0

(c)l F
(a1,··· ,as,b1,··· ,bs)
p (c1 + l, c2; c3; t)

xl

l!

=

∞
∑

m=0

(c)m
B

(a1,··· ,as,b1,··· ,bs)
p (c2 +m, c3 − c2)

B(c2, c3 − c2)

[

∞
∑

l=0

(c1 +m)l
xl

l!

]

tm

m!
.

=
∞
∑

m=0

(c)m
B

(a1,··· ,as,b1,··· ,bs)
p (c2 +m, c3 − c2)

B(c2, c3 − c2)
(1− x)−(c1+m) t

m

m!
,

which, in view of (31), yields our claimed result (41).
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