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Abstract: An edge magic labeling of a graph G is a bijection λ : V (G) ∪
E(G) → {1, 2, . . . , |V (G)|+|E(G)|} such that λ(u)+λ(uv)+λ(v) is constant, for
every edge uv ∈ E(G). The concept of edge magic deficiency was introduce by
Kotzig and Rosas. Motivated by this concept Figueroa-Centeno, Ichishima and
Muntaner-Batle defined a similar concept for super edge magic total labelings.

The super edge magic deficiency of a graph G, which is denoted by µs(G), is
the minimum nonnegative integer n such that G∪nK1, has a super edge magic
total labeling or it is equal to +∞ if there exists no such n. In this paper, we
study the super edge magic deficiency of kite graphs.
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1. Introduction

In this paper, we consider the graph G as a finite, simple and undirected graph
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and denote the vertex set and edge set of a graph G by V (G) and E(G) respec-
tively, where |V (G)| = p and |E(G)| = q. An edge magic labeling of a graph G
is a bijection ξ : V (G)∪E(G) → {1, 2, . . . , p+ q} such that ξ(x) + ξ(xy) + ξ(y)
constant, for every edge xy ∈ E(G). A graph with an edge magic labeling is
called edge magic graph. An edge magic labeling ξ is called super edge magic

if ξ(V (G)) = {1, 2, . . . , p}. A graph with super edge magic labeling is called a
super edge magic graph.

In [15], Kotzig and Rosa proved that for any graph G there exists an edge
magic graph H such that H ∼= G ∪ nK1 for some nonnegative integer n. This
fact leads to the concept of edge magic deficiency of a graph G, which is the
minimum nonnegative integer n such that G ∪ nK1 is edge magic and it is
denoted by µ(G). In particular,

µ(G) = min{n ≥ 0 : G ∪ nK1 is edge magic}.

In the same paper, Kotzig and Rosa gave an upper bound for the edge magic
deficiency of a graph G with n vertices, µ(G) ≤ Fn+2−2−n− 1

2n(n−1), where
Fn is the nth Fibonacci number. Motivated by Kotzig and Rosa’s concept of
edge magic deficiency, Figueroa-Centeno et al. [9] defined a similar concept
for super edge magic labeling. The super edge magic deficiency of a graph G,
which is denoted by µs(G), is the minimum nonnegative integer n such that
G ∪ nK1 has a super edge magic labeling or +∞ if there exists no such n,

formally defined as:

Let M(G) = {n ≥ 0 : G ∪ nK1 is a super edge magic graph}, then

µs(G) =

{

min M(G), if M(G) 6= φ;
+∞, if M(G) = φ.

As a consequence of the above two definitions, we note that for every graph G,
µ(G) ≤ µs(G).

In [9, 10], Figueroa-Centeno et al. provided the exact values for the super
edge magic deficiencies of several classes of graphs, such as cycles, complete
graphs, 2-regular graphs, and complete bipartite graphsK2,m. They also proved
that all forests have finite deficiency. They proved that

µs(Cn) =







0, if n is odd
1, if n ≡ 0 (mod 4)
+∞, if n ≡ 2 (mod 4).

For more details, the results on edge magic and super edge magic labeling
of some graphs seen in [3, 5, 6, 7, 9, 12, 13, 16] and a complete survey [11].
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In [18] Wallis posed the problem of investigating the edge magic properties
of Cn with the path of length t attached to one vertex. Kim and Park [14] call
such a graph an (n, t)−kite. The following proposition, proved by Ahmad and
Muntaner-Batle [2], show that for an (n, t)−kite to be super edge-magic, n and
t must have same parity.

Proposition 1. ([2]) Let G = (n, t)−kite. If G is super edge-magic, then n

and t have the same parity.

In proving our results, we frequently use the following lemma:

Lemma 1. ([8]) A graph G with p vertices and q edges is super edge magic total

if and only if there exists a bijective function φ : V (G) → {1, 2, · · · , p} such that

the set S = {φ(x) + φ(y) : xy ∈ E(G)} consists of q consecutive integers. In

such a case, φ extends to super edge magic total labeling of G.

Kim and Park [14] proved that an (n, 1)−kite is super edge-magic if and
only if n is odd and an (n, 3)−kite is super edge magic if and only if n is odd
and at least 5. Also, Park, Choi and Bae [17] proved that an (n, 2)−kite is
super edge magic if and only if n is even. From Proposition 1, (n, t)−kite is not
super edge magic if n is odd and t is even.

In [2], Ahmad et al. determined the exact value of super edge magic defi-
ciency of (n, t)-kite graph for all odd n; t ≡ 0, 1 (mod 4) and also showed the
upper bound for all odd n, t ≡ 2, 3 (mod 4). In [4], Ahmad et al. determined
the upper bound for all odd n and t ≡ 3, 7 (mod 8), t 6= 11. In the next lemma,
we determined the upper bound for t = 11.

Lemma 2. For all odd n ≥ 3, let G = (n, 11) be a kite graph. Then µs(G) ≤ 2.

Proof. Let G∗ = G∪ 2K1, the vertex set and edge set of G∗ are defined as:

V (G∗) = {xi : 1 ≤ i ≤ n} ∪ {yj : 1 ≤ j ≤ 11} ∪ {z1, z2},

E(G∗) = {xixi+1 : 1 ≤ i ≤ n− 1} ∪ {yjyj+1 : 1 ≤ j ≤ 10} ∪ {xnx1, y1xn}.

We define the labeling ψ : V (G∗) → {1, 2, . . . , |V (G)| + 2} of the graph G∗

in the following way:

ψ(xi) =







i
2 , for even i; 1 ≤ i ≤ n,

n+12+i
2 , for odd i; 1 ≤ i ≤ n,
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ψ(yj) =







n+j

2 , for odd j; 1 ≤ j ≤ 5,

2n+12+j

2 , for even j; 1 ≤ j ≤ 8,

ψ(y7) =
n+11

2 , ψ(y9) =
n+7
2 , ψ(y11) =

n+9
2 , ψ(y10) = n+ 13.

The isolated vertices z1, z2 under the labeling ψ are labeled as

ψ(z1) = n+ 11, ψ(z1) = n+ 12.

It is easy to check that the edge sums are n+15
2 , n+17

2 , n+19
2 , . . . , 3n+35

2 . Therefore
by Lemma 1, ψ can be extended to a super edge magic total labeling. This shows
that µs(G) ≤ 2, which completes the proof.

Ahmad et al. [1] found the exact value of super edge magic deficiency of
(n, t)−kite graph for n even and t = 1, 3. In [4], Ahmad et al. found the upper
bound and exact value of super edge magic deficiency of (n, t)−kite graph for
n ≡ 2 (mod 4), t = 4 and t = 5, respectively. In next lemma and theorems, we
found the upper bound of super edge magic deficiency of (n, t)−kite graph for
n ≡ 2 (mod 4) and for all t ≥ 6.

Lemma 3. For all odd t ≥ 7 and n ≥ 10, n ≡ 2 (mod 4) with n > t and

n− t = 1, 3. Then µs(G) ≤ 2.

Proof. Let u1, u2, . . . , un be a vertex sequence of Cn and let v1, v2, . . . , vt be
the vertices of the path (the tail). Let G∗ = G ∪ 2K1, the vertex set and edge
set of G∗ are defined as:

V (G∗) = {ui : 1 ≤ i ≤ n} ∪ {vj : 1 ≤ j ≤ t} ∪ {z1, z2},

E(G∗)={uiui+1 : 1 ≤ i ≤ n−1} ∪ {vjvj+1 : 1 ≤ j ≤ t−1} ∪ {unu1, unv1}.

We define the labeling ψ : V (G∗) → {1, 2, . . . , |V (G)| + 2} of the graph G∗

in the following way:

ψ(ui) =



















n+t+3
2 , for i = 1,

i−1
2 , for odd i; 3 ≤ i ≤ n,

n+t+3+i
2 , for even i; 1 ≤ i ≤ n.

• When n− t = 1:
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ψ(vj) =































n
2 , for j = 1,

n+1+j

2 , for odd j; 3 ≤ j ≤ t,

2n+t+3+j

2 , for even j; 1 ≤ j ≤ t−1
2 ,

2n+t+5+j

2 , for even j; t+1
2 ≤ j ≤ t.

The isolated vertices are labeled as ψ(z1) =
n+2
2 , ψ(z2) =

4n+3t+5
2 .

1

10219208187175

12

1

16

4

153

14

2

13 1

196

Figure 1: An illustration of the labeling for n− t = 1.

• When n− t = 3:

ψ(vj) =



















n−1+j

2 , for odd j; 1 ≤ j ≤ t−1
2 ,

n+1+j

2 , for odd j; t+1
2 ≤ j ≤ t,

2n+t+5+j

2 , for even j; 1 ≤ j ≤ t.

The isolated vertices are labeled as ψ(z1) =
2n+t+1

4 , ψ(z2) =
2n+t+5

2 .

One can see that all edge sums form the set of q consecutive integers:
{n+t+7

2 , n+t+9
2 , . . . , 3n+3t+5

2 }. Applying Lemma 1, ψ can be extended to a super
edge magic total labeling. Hence, the graph G∗ admits a super edge magic total
labeling.

Theorem 1. For all odd t ≥ 7 and n ≥ 14, n ≡ 2 (mod 4), the super edge

magic deficiency of G = (n, t)-kite graph is

µs(G)







≤ 2, for n > t and n− t = 4a+ 1, a = 1, 2, 3, . . .

≤ 3, for n > t and n− t = 4a+ 3, a = 1, 2, 3, . . .

Proof. Case 1. When n > t and n− t = 4a+ 1, a = 1, 2, 3, . . . :
Let G∗ = G∪ 2K1, the vertex set and edge set of G∗ are same as in Lemma

3. We define the labeling ψ : V (G∗) → {1, 2, . . . , |V (G)| + 2} of the graph G∗
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1

9198186175

11

1

15

4

143

13

2

12 0

167

Figure 2: An illustration of the labeling for n− t = 3.

in the following way:

ψ(ui) =































n+t+1
2 , for i = 1,

i−1
2 , for odd i; 3 ≤ i ≤ n,

n+t+1+i
2 , for even i; 1 ≤ i ≤ n− 2a,

n+t+3+i
2 , for even i; n− 2a+ 1 ≤ i ≤ n,

ψ(vj) =



















n−1+j

2 , for odd j; 1 ≤ j ≤ t,

2n+t+3+j

2 , for even j; 1 ≤ j ≤ t−1
2 ,

2n+t+5+j

2 , for even j; t+1
2 ≤ j ≤ t.

The isolated vertices are labeled as ψ(z1) =
2n+t−2a+3

2 , ψ(z2) =
4n+3t+9

4 .

Case 2. When n > t and n− t = 4a+ 3, a = 1, 2, 3, . . . :
Let G∗ = G ∪ 3K1, the vertex set and edge set of G∗ be defined as:

V (G∗) = {ui : 1 ≤ i ≤ n} ∪ {vj : 1 ≤ j ≤ t} ∪ {z1, z2, z3},

E(G∗) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {vjvj+1 : 1 ≤ j ≤ t− 1} ∪ {unu1, unv1}.

We define the labeling ψ : V (G∗) → {1, 2, . . . , |V (G)| + 3} of the graph G∗ in
the following way:

ψ(ui) =































n+t+3
2 , for i = 1,

i−1
2 , for odd i; 3 ≤ i ≤ n,

n+t+3+i
2 , for even i; 1 ≤ i ≤ n− 2a,

n+t+5+i
2 , for even i; n− 2a+ 1 ≤ i ≤ n,
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ψ(vj) =



















n−1+j

2 , for odd j; 1 ≤ j ≤ t,

2n+t+5+j

2 , for even j; 1 ≤ j ≤ t+1
2 ,

2n+t+7+j

2 , for even j; t+3
2 ≤ j ≤ t.

The isolated vertices are labeled as

ψ(z1) =
n+ t+ 1

2
, ψ(z2) =

2n+ t− 2a+ 5

2
, ψ(z3) =

4n + 3t+ 15

4
.

The edge sums under the labeling ψ are q consecutive integers from the set

{n+ t+ 5

2
,
n+ t+ 7

2
, . . . ,

3n+ 3t+ 3

2

}

for Case 1, and

{n+ t+ 7

2
,
n+ t+ 9

2
, . . . ,

3n+ 3t+ 5

2

}

for Case 2. Then according to Lemma 1, ψ can be extended to a super edge
magic total labeling. Hence, the graph G∗ admits a super edge magic total
labeling.

Theorem 2. For all odd t ≥ 7 and n ≥ 6, n ≡ 2 (mod 4) with t > n, the super

edge magic deficiency of G = (n, t)-kite graph is µs(G) ≤ 2.

Proof. Let G∗ = G ∪ 2K1, the vertex set and edge set of G∗ are same as
in Lemma 3. We define the labeling ψ : V (G∗) → {1, 2, . . . , |V (G)| + 2} of the
graph G∗ in the following way:

ψ(ui) =



















n+t+3
2 , for i = 1,

i−1
2 , for odd i; 3 ≤ i ≤ n,

n+t+3+i
2 , for even i; 1 ≤ i ≤ n.

Case 1. When t− n = 4s+ 1, s = 0, 1, 2, . . . :

ψ(vj) =































n−1+j

2 , for odd j; 1 ≤ j ≤ t−1
2 ,

n+1+j

2 , for odd j; t+1
2 ≤ j ≤ t,

2n+t+3+j

2 , for even j; 1 ≤ j ≤ 2s+ 2,

2n+t+5+j

2 , for even j; 2s+ 4 ≤ j ≤ t.

The isolated vertices are labeled as ψ(z1) =
2n+t+1

2 , ψ(z2) =
2n+t+2s+7

2 .
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Case 2. When t− n = 4s− 1, s = 1, 2, 3, . . . :

ψ(vj) =































n−1+j

2 , for odd j; 1 ≤ j ≤ 2s + 1,

n+1+j

2 , for odd j; 2s+ 3 ≤ j ≤ t,

2n+t+3+j

2 , for even j; 1 ≤ j ≤ t−1
2 ,

2n+t+5+j

2 , for even j; t+1
2 ≤ j ≤ t.

The isolated vertices are labeled as ψ(z1) =
n+2s+2

2 , ψ(z2) =
4n+3t+9

2 .

It is easy to check that all edge sums in both cases form the same set of q
consecutive integers as in Lemma 3. Therefore by Lemma 1, ψ can be extended
to a super edge magic total labeling. Hence, the graph G∗ admits a super edge
magic total labeling.

Theorem 3. For n ≥ 6, n ≡ 2 (mod 4) and t ≥ 8, t ≡ 0 (mod 4), the super

edge magic deficiency of G = (n, t)-kite graph is

µs(G)



















≤ 2, for n > t and n− t = 2,

≤ 3, for n > t and n− t = 4r + 2, r = 1, 2, 3, . . . ,

≤ 2, for t > n and t− n = 4r + 2, r = 0, 1, 2, . . . .

Proof. Let a1, a2, . . . , an be a vertex sequence of Cn and let b1, b2, . . . , bt be
the vertices of the path (the tail). Let G = (n, t) kite graph, the vertex set and
edge set of G are defined as:

V (G) = {ai : 1 ≤ i ≤ n} ∪ {bj : 1 ≤ j ≤ t},

E(G) = {aiai+1 : 1 ≤ i ≤ n− 1} ∪ {bjbj+1 : 1 ≤ j ≤ t− 1} ∪ {ana1, anb1}.

Case 1. When G∗ = G ∪ 2K1:

We define the labeling ψ : V (G∗) → {1, 2, . . . , |V (G)| + 2} of the graph G∗

in the following way:

ψ(ai) =



















n+t+2
2 , for i = 1,

i−1
2 , for odd i; 3 ≤ i ≤ n,

n+t+2+i
2 , for even i; 1 ≤ i ≤ n,
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ψ(bj) =







n−1+j

2 , for odd j; 1 ≤ j ≤ t−2
2 , ,

n+1+j

2 , for odd j; t
2 ≤ j ≤ t.

The isolated vertex c1, is labeled as ψ(c1) =
2n+t
4 .

• When n > t and n− t = 2,

ψ(bj) =
2n + t+ 4 + j

2
, for even j; 1 ≤ j ≤ t.

The isolated vertex c2, is labeled as ψ(c2) =
2n+t+4

2 .

• When t > n and t− n = 4r + 2, r = 0, 1, 2, . . . ,

ψ(bj) =







2n+t+2+j

2 , for even j; 1 ≤ j ≤ 2r + 2, ,

2n+t+4+j

2 , for even j; 2r + 4 ≤ j ≤ t.

The isolated vertex c2, is labeled as ψ(c2) =
2n+2r+t+6

2 .

Case 2. When G∗ = G ∪ 3K1 and n > t, n− t = 4r + 2, r = 1, 2, 3, . . . :
We define the labeling ψ : V (G∗) → {1, 2, . . . , |V (G)| + 3} of the graph G∗

in the following way:

ψ(ai) =































n+t+2
2 , for i = 1,

i−1
2 , for odd i; 3 ≤ i ≤ n,

n+t+2+i
2 , for even i; 1 ≤ i ≤ n− 2r,

n+t+4+i
2 , for even i; n− 2r + 2 ≤ i ≤ n,

ψ(bj) =



















n−1+j

2 , for odd j; 1 ≤ j ≤ t,

2n+t+4+j

2 , for even j; 1 ≤ j ≤ t
2 ,

2n+t+6+j

2 , for even j; t+2
2 ≤ j ≤ t.

The isolated vertices are

labeled as

ψ(c1) =
n+ t

2
, ψ(c2) =

2n− 2r + t+ 4

2
, ψ(c3) =

4n + 3t+ 12

2
.

The set of all edge sums generated by the above formula contains q con-
secutive integers n+t+6

2 , n+t+8
2 , . . . , 3n+3t+4

2 . Therefore by Lemma 1, ψ can be
extended to a super edge magic total labeling. Hence, the graph G∗ admits a
super edge magic total labeling.
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Theorem 4. For n, t ≥ 6 and n, t ≡ 2 (mod 4), the super edge magic deficiency

of G = (n, t)-kite graph is µs(G) ≤ 2.

Proof. Let G∗ = G∪ 2K1, the vertex set and edge set of G∗ are defined as:

V (G∗) = {ai : 1 ≤ i ≤ n} ∪ {bj : 1 ≤ j ≤ t} ∪ {c1, c2},

E(G∗) = {aiai+1 : 1 ≤ i ≤ n− 1} ∪ {bjbj+1 : 1 ≤ j ≤ t− 1} ∪ {ana1, a1bt}.

We define the labeling ψ : V (G∗) → {1, 2, . . . , |V (G)| + 2} of the graph G∗

in the following way:

ψ(ai) =







t+3+i
2 , for odd i; 1 ≤ i ≤ n− 1,

t+n+4
2 , for i = n,

ψ(bj) =







j+1
2 , for odd j; 1 ≤ j ≤ t

2 ,

j+3
2 , for odd j; t+2

2 ≤ j ≤ t.

The isolated vertex c1, is labeled as ψ(c1) =
t+6
4 .

Case 1. When t ≥ n and t− n = 4r, r = 0, 1, 2, . . . :

ψ(ai) =
2t+n+6+i

2 , for even i; 1 ≤ i ≤ n− 2,

ψ(bj) =







t+n+4+j

2 , for even j; 1 ≤ j ≤ t− 2r − 2,

t+n+6+j

2 , for even j; t− 2r ≤ j ≤ t.

The isolated vertex c2, is labeled as ψ(c2) =
2t+n−2r+4

2 .

Case 2. When n > t and n− t = 4r, r = 1, 2, 3, . . . :

ψ(bj) =
t+n+4+j

2 , for even j; 1 ≤ j ≤ t,

ψ(ai) =



















2t+n+6+i
2 , for even i; 1 ≤ i ≤ n− 2, r = 1,

2t+n+4+i
2 , for even i; 1 ≤ i ≤ 2r − 1, r 6= 1,

2t+n+6+i
2 , for even i; 2r ≤ i ≤ n− 2, r 6= 1.

The isolated vertex are labeled as ψ(c2) =
2t+n+2r+4

2 .

As all the edge sums are q consecutive integers

n+ t+ 8

2
,
n+ t+ 10

2
, . . . ,

3n + 3t+ 6

2
,
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by Lemma 1, the vertex labeling ψ can be extended to a super edge magic total
labeling. Hence, the graph G∗ admits a super edge magic total labeling.
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