CYCLE SUPER MAGIC LABELING
OF PLANAR GRAPHS

Abstract

A simple graph $G(V,E)$ admits a $H$-covering, if every edge in $E(G)$ belongs to a subgraph of $G$ isomorphic to $H$. The graph $G$ is said to be $H$-magic, if there exists a bijection $\psi : V (G)\cup E(G) \rightarrow \{1, 2, 3, \dots , \vert V (G)\vert+\vert E(G)\vert\}$ such that for every subgraph $H'$ of $G$ isomorphic to $H$,
$\sum\limits_{v\in V(H')}\psi(v)+ \sum\limits_{e\in E(H')}\psi(e)$ is constant. Moreover $G$ is said to be $H$-supermagic, if $\psi(V (G)) = \{1, 2, 3, \dots , \vert V (G)\vert\}$. In this paper, we study the cycle-supermagic labeling of a pumpkin graph and two classes of planar maps containing 8-sided and 4-sided faces or 6-sided and 4-sided faces, respectively.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 6
Year: 2019

DOI: 10.12732/ijam.v32i6.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M. Bača, On magic labelings of grid graphs, Ars Combin., 33 (1992), 295- 299.
  2. [2] M. Bača, On magic labelings of honeycomb, Discrete Math., 105 (1992), 305-311.
  3. [3] H. Enomoto, A. Lladó, T. Nakamigawa and G. Ringel, Super edge magic graphs, SUT J. Math., 34 (1998), 105-109.
  4. [4] A. Gutiérrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput., 55 (2005), 43-56.
  5. [5] P. Jeyanthi and P. Selvagopal, More classes of H-supermagic graphs, Int. J. Algor. Comp and Math., 3 (2010), 93-108.
  6. [6] K. Kathiresan and S. Gokulakrishnan, On magic labelings of type (1, 1, 1) for the special classes of plane graphs, Utilitas Math., 63 (2003), 25-32.
  7. [7] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull., 13, No 4 (1970), 451-461.
  8. [8] K.W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math., 24 (1983), 165-197.
  9. [9] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math., 307, No 23 (2007), 2925-2933.
  10. [10] T.K. Maryati, E.T. Baskoro and A.N.M. Salman, Ph -supermagic labelings of some trees, J. Combin. Math. Combin. Comput., 65 (2008), 197-204.
  11. [11] A.A.G. Ngurah, A.N.M. Salman and L. Susilowati, H-supermagic labeling of graphs, Discrete Math., 310 (2010), 1293-1300.