EMBEDDING OF COMPLETE MULTIPARTITE
GRAPHS INTO CYCLE-OF-LADDERS
Jia-Bao Liu1, R. Karthik2
S. Rethina Kumar3 1School of Mathematics and Physics
Anhui Jianzhu University, Hefei 230601, P.R. CHINA 2Department of Mathematics
Velammal Engineering College, Chennai, INDIA 3 Department of Mathematics
Thanthai Hans Roever College, Perambalur, INDIA
Graph embedding is the mapping of a topological structure (guest
graph) into another topological structure (host graph) that
preserves certain required topological properties and the graph
embedding ability reflects how efficiently a parallel algorithm
with a guest graph can be executed on a host graph [#!Pa99!#] and
the utilization of system resources in the host graph
[#!KiBh08!#]. In this paper, we obtain exact wirelength
of embedding complete multipartite graphs into cycle-of-ladders.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] B. Parhami, An Introduction to Parallel Processing: Algorithms and Architectures, Plenum Press, New York, 1999.
[2] V. Kianzad, S.S. Bhattacharyya, Efficient techniques for clustering and
scheduling onto embedded multiprocessors, IEEE Transactions on Parallel
and Distributed Systems, 17, No 7 (2006), 1847-1849.
[3] H.S. Lim, J.H. Park, K.Y. Chwa, Embedding trees in recursive circulants,
Discrete Applied Mathcmatlcs, 69 (1996), 83-99.
[4] J. Opatrny, D. Sotteau, Embeddings of complete binary trees into grids and
extended grids with total vertex-congestion, Discrete Applied Mathematics,
98 (2000), 237-254.
[5] S.L. Bezrukov, J.D. Chavez, L.H. Harper, M. Röttger, U.P. Schroeder, The
congestion of n-cube layout on a rectangular grid, Discrete Mathematics,
213 (2000), 13-19.
[6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, New York, 1976.
[7] J.-B. Liu, S. Wang, C. Wang, S. Hayat, Further results on computation of
topological indices of certain networks, IET Control Theory Appl.; DOI:
10.1049/ietcta.2016.1237.
[8] S. Wang, B. Wei, Multiplicative Zagreb indices of k-trees, Discrete Appl.
Math., 180 (2015), 168-175.
[9] J.-B. Liu, C. Wang, S. Wang, B. Wei, Zagreb indices and multiplicative
Zagreb indices of eulerian graphs, Bull. Malays. Math. Sci. Soc.; DOI:
10.1007/s40840-017-0463-2.
[10] J.M. Xu, Topological Structure and Analysis of Interconnection Networks,
Kluwer Academic Publishers, 2001.
[11] Y.L. Lai, K. Williams, A survey of solved problems and applications on
bandwidth, edgesum, and profile of graphs, J. Graph Theory, 31 (1999),
75-94.
[12] I. Rajasingh, J. Quadras, P. Manuel, A. William, Embedding of cycles and
wheels into arbitrary trees, Networks, 44 (2004), 173-178.
[13] A.K. Gupta, D. Nelson, H. Wang, Efficient embeddings of ternary trees
into hypercubes, J. of Parallel and Distributed Computing, 63, No 6 (2003),
619-629.
[14] J. Fan, X. Jia, Embedding meshes into crossed cubes, Information Sciences, 177, No 15 (2007), 3151-3160.
[15] W.K. Chen, M.F.M. Stallmann, On embedding binary trees into hypercubes, Information Sciences, 24 (1995), 132-138.
[16] S.L. Bezrukov, Embedding complete trees into the hypercube, Discrete
Applied Mathematics, 110, No 2-3 (2001), 101-119.
[17] J.F. Fang, K.C. Lai, Embedding the incomplete hypercube in books, Information Processing Letters, 96 (2005), 1-6.
[18] P.L. Lai, C.H. Tsai, Embedding of tori and grids into twisted cubes, Theoretical Computer Science, 411, No 40-42 (2010), 3763-3773.
[19] Y. Han, J. Fan, S. Zhang, J. Yang, P. Qian, Embedding meshes into locally
twisted cubes, Information Sciences, 180, No 19 (2010), 3794-3805.
[20] R. Caha, V. Koubek, Optimal embeddings of generalized ladders into hypercubes, Discrete Mathematics, 233 (2001), 65-83.
[21] M. Rottger, U.P. Schroeder, Efficient embeddings of grids into grids, Discrete Applied Mathematics, 108, No 1-2 (2001), 143-173.
[22] J.D. Chavez, R. Trapp, The cyclic cutwidth of trees, Discrete Applied
Mathematics, 87 (1998), 25-328.
[23] C.J. Guu, The Circular Wirelength Problem for Hypercubes, Ph.D. Dissertation, University of California, Riverside, 1997.
[24] M.C. Yang, Path embedding in star graphs, Applied Mathematics and
Computation, 207, No 2 (2009), 283-291.
[25] C.H. Tsai, Embedding of meshes in M oobius cubes, Theoretical Computer
Science, 401, No 1-3 (2008), 181-190.
[26] P. Manuel, Minimum average congestion of enhanced and augmented hypercube into complete binary tree, Discrete Applied Mathematics, 159, No
5 (2010), 360-366.
[27] M.R Garey, D.S Johnson DS, Computers and Intractability, a Guide to the
Theory of NP-Completeness, Freeman, San Francisco, 1979.
[28] I. Rajasingh, P. Manuel, M. Arockiaraj B. Rajan, Embeddings of circulant
networks, Journal of Combinatorial Optimization, 26, No 1 (2013), 135151.
[29] P. Manuel, M. Arockiaraj, I. Rajasingh, B. Rajan, Embedding hypercubes
into cylinders, snakes and caterpillars for minimizing wirelength, Discrete
Applied Mathematics, 159, No 17 (2011), 2109-2116.
[30] I. Rajasingh, B. Rajan, R.S. Rajan, Embedding of special classes of circulant networks, hypercubes and generalized Petersen graphs, International
Journal of Computer Mathematics, 89, No 1 (2012), 1970-1978.
[31] S.L. Bezrukov, S.K. Das, R. Elsässer, An edge-isoperimetric problem for
powers of the Petersen graph, Annals of Combinatorics, 4 (2000), 153-169.
[32] P. Manuel, I.Rajasingh, B.Rajan, H. Mercy, Exact wirelength of hypercube
on a grid, Discrete Appl. Math., 157, No 7 (2009), 1486-1495.
[33] J.F. Fang, The bipancycle-connectivity of the hypercube, Information Sciences, 178 (2008), 4679-4687.
[34] S.K. Vaidya, S. Srivastav, V.J. Kaneria, G.V. Ghodasara, Cordial and
3-equitable labeling of star of a cycle, Discrete Mathematics, 24 (2008),
54-64.
[35] R.S. Rajan, T.M Rajalaxmi, Jia-Baco, G. Sethuraman, Wirelength of embedding complete multipartite graphs into certain graphs, Manuscript.
[36] M. Miller, R.S. Rajan, N. Parthiban, I. Rajasingh, Minimimum linear
arrangment of incomlete hypercubes, The Computer Journal, No 2 (2015),
331-337.