A STUDY OF INERTIA INDICES,
SIGNATURE AND NULLITY OF V-PHENYLENIC [m,n]

Abstract

A molecular/chemical graph is hydrogen depleted chemical structure in which vertices denote atoms and edges denote the bonds. Topological descriptors are the numerical indices based on the topology of the atoms and their bonds (chemical conformation, quaternary structure). They correlate various physico-chemical properties like boiling point, enthalpy of formation, enthalpy of vaporization, Kovat's constant etc., of various chemical compounds. The numerical parameters like inertia indices, signature and nullity attract much attention due to their diverse application in chemistry, e.g. nullity of a molecular graph is related to the stability of saturated hydrocarbons. In this paper, we determine the inertia indices, signature and nullity of V-phenylenic [m,n] nanotube. We also study these numerical parameters for line graph of V-phenylenic [m,n] nanotube.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 6
Year: 2019

DOI: 10.12732/ijam.v32i6.2

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] G. Chang, J. Huang, L. Yeh, Hong-Gwa, A characterization of graphs with rank 5, Lin. Alg. and its Appl., 434, No 8 (2011), 1793–1798.
  2. [2] P.W. Atkins, J. de Paula, Physical Chemistry, 8th Ed., Oxford University Press (2006).
  3. [3] M. Bača, J. Horváthová, M. Mokrišová, A. Semaničová-Feňovčiková, A. Suhányiová, On topological indices of carbon nanotube network, Can. J. of Chem., 93, No 10 (2015), 1157–1160.
  4. [4] A.Q. Baig, M. Imran, H. Ali, On topological indices of Poly oxide, Poly silicate, DOX and DSL networks, Can. J. of Chem., 03 (2015); DOI:10.1139/cjc-2014-0490.
  5. [5] S.A.H. Bokhary, M. Imran, S. Manzoor, On molecular topological prop-erties of dendrimers, Can. J. of Chem., 11 (2015); DOI:10.1139/cjc-2015-0466.
  6. [6] Chemdraw Software for Windows, PerkinElmer Informatics.
  7. [7] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs: Theory and Appli-cation, Academic Press (1980).
  8. [8] M.V. Diudea, O. Ursu, Cs.L. Nagy, Topocluj, Babes-Bolyai University, Cluj (2002). 932 Z.-Q. Chu, A. Razzaq, K. Ali, S.T. Raza Rizvi
  9. [9] M. Imran, A.Q. Baig, H. Ali, On topological properties of dominating David derived networks, Can. J. of Chem., 11 (2015); DOI:10.1139/cjc-2015-0185.
  10. [10] MATLAB R2015a, The MathWorks, Inc., Natick, Massachusetts, United States.
  11. [11] N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton - FL (1992).
  12. [12] G. Yu, L. Feng, Q. Wang, Bicyclic graphs with small positive index of inertia, Linear Algebra Appl., 438 (2013), 2036–2045.
  13. [13] HyperChem Package Release 7.5 for Windows, Hypercube Inc., Gainesville, Florida 32601, USA (2002).