A STUDY OF INERTIA INDICES,
SIGNATURE AND NULLITY OF V-PHENYLENIC [m,n]
Zheng-Qing Chu1, Asim Razzaq2,
Kashif Ali2, Syed Tahir Raza Rizvi3 1Department of General Education
Anhui Xinhua University
Hefei 230088, CHINA 2Department of Mathematical Sciences
COMSATS Institute of Information Technology
Lahore, PAKISTAN
A molecular/chemical graph is hydrogen depleted chemical structure
in which vertices denote atoms and edges denote the bonds.
Topological descriptors are the numerical indices based on the
topology of the atoms and their bonds (chemical conformation,
quaternary structure). They correlate various physico-chemical
properties like boiling point, enthalpy of formation, enthalpy of
vaporization, Kovat's constant etc., of various chemical
compounds. The numerical parameters like inertia indices,
signature and nullity attract much attention due to their diverse
application in chemistry, e.g. nullity of a molecular graph is
related to the stability of saturated hydrocarbons. In this paper,
we determine the inertia indices, signature and nullity of
V-phenylenic [m,n] nanotube. We also study these numerical
parameters for line graph of V-phenylenic [m,n] nanotube.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] G. Chang, J. Huang, L. Yeh, Hong-Gwa, A characterization of graphs with
rank 5, Lin. Alg. and its Appl., 434, No 8 (2011), 1793–1798.
[2] P.W. Atkins, J. de Paula, Physical Chemistry, 8th Ed., Oxford University
Press (2006).
[3] M. Bača, J. Horváthová, M. Mokrišová, A. Semaničová-Feňovčiková, A.
Suhányiová, On topological indices of carbon nanotube network, Can. J.
of Chem., 93, No 10 (2015), 1157–1160.
[4] A.Q. Baig, M. Imran, H. Ali, On topological indices of Poly oxide,
Poly silicate, DOX and DSL networks, Can. J. of Chem., 03 (2015);
DOI:10.1139/cjc-2014-0490.
[5] S.A.H. Bokhary, M. Imran, S. Manzoor, On molecular topological prop-erties of dendrimers, Can. J. of Chem., 11 (2015); DOI:10.1139/cjc-2015-0466.
[6] Chemdraw Software for Windows, PerkinElmer Informatics.
[7] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs: Theory and Appli-cation, Academic Press (1980).
[8] M.V. Diudea, O. Ursu, Cs.L. Nagy, Topocluj, Babes-Bolyai University, Cluj
(2002).
932
Z.-Q. Chu, A. Razzaq, K. Ali, S.T. Raza Rizvi
[9] M. Imran, A.Q. Baig, H. Ali, On topological properties of dominating
David derived networks, Can. J. of Chem., 11 (2015); DOI:10.1139/cjc-2015-0185.
[10] MATLAB R2015a, The MathWorks, Inc., Natick, Massachusetts, United
States.
[11] N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton - FL
(1992).
[12] G. Yu, L. Feng, Q. Wang, Bicyclic graphs with small positive index of
inertia, Linear Algebra Appl., 438 (2013), 2036–2045.
[13] HyperChem Package Release 7.5 for Windows,
Hypercube Inc.,
Gainesville, Florida 32601, USA (2002).