COMPUTING ZAGREB INDICES AND
ZAGREB POLYNOMIALS OF FULLERENE,
BUTTERFLY AND BENES NETWORKS
Jianzhong Xu1, Muhammad K. Siddiqui2,
Mohammad R. Farahani3, Ismail Naci Cangul4 1Department of Electronics and Information Engineering
Bozhou University, Bozhou 236800, CHINA 2Department of Mathematics
COMSATS University Islamabad
Lahore Campus, 54000, PAKISTAN 3 Department of Applied Mathematics
Iran University of Science and Technology (IUST)
Narmak, Tehran 16844, IRAN 4Bursa Uludag University, Mathematics
16059, Bursa, TURKEY
A topological index is a numerical parameter of a graph which
characterizes some of the topological properties of the graph. The
concepts of hyper-Zagreb index, first multiple Zagreb index,
second multiple Zagreb index and relatedly the Zagreb polynomials
were established in chemical graph theory by means of the vertex
degrees. It is reported that these indices are useful in the study
of anti-inflammatory activities of certain chemical networks. In
this paper, we study fullerene, butterfly, Benes networks and
determine the hyper-Zagreb index, first multiple Zagreb index,
second multiple Zagreb index and the Zagreb polynomials of them.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] T. Al-Fozan, P. Manuel, I. Rajasingh, R. S. Rajan, A new technique to
compute Padmakar-Ivan index and Szeged index of pericondensed benzenoid graphs, J. Comput. Theor. Nanosci. 11 (2014), 533-539.
[2] A. Alwardi, A. Alqesmah, R. Rangarajan, I. N. Cangul, Entire Zagreb
indices of graphs, Discrete Mathematics, Algorithms and Applications, 10,
No 3 (2018), Art. 1850037 (16 pages); DOI: 10.1142/S1793830918500374.
[3] M. Bača, A. Shabbir, Total labeling of toroidal polyhexes, Sci. Int.(Lahore)
24, No 3 (2012), 239-241.
[4] V. E. Beneš, Mathematical Theory of Connecting Networks and Telephone
Traffic, Academic Press (1965).
[5] A. R. Bindusree, I. N. Cangul, V. Lokesha, A. S. Cevik, Zagreb polynomials
of three graph operators, Filomat 30, No 7 (2016), 1979-1986.
[6] K. C. Das, N. Akgunes, M. Togan, A. Yurttas, I. N. Cangul, A. S. Cevik,
On the first Zagreb index and multiplicative Zagreb coindices of graphs,
Analele Stiint. ale Universitatii Ovidius Constanta, 24, No 1 (2016), 153176.
[7] K. C. Das, A. Yurttas, M. Togan, I. N. Cangul, A. S. Cevik, The multiplicative Zagreb indices of graph operations, J. of Inequalities and Applications,
90 (2013), 1-14; doi:10.1186/1029-242X-2013-90.
[8] M. Deza, P. W. Fowler, A. Rassat, K. M. Rogers, Fullerenes as tilings of
surfaces, J. Chem. Inf. Comput. Sci., 40 (2000) 550-558.
[9] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory
and applications, Acta Appl. Math., 66 (2001) 211-249.
[10] M. Eliasi, A simple approach to order the multiplicative Zagreb indices of
connected graphs, Trans. Comb., 4 (2012), 17-24.
[11] M. Eliasi, A. Ghalavand, Ordering of trees by multiplicative second Zagreb
index, Trans. Comb., 5, No 1 (2016), 49-55.
[12] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative version of first Zagreb
index, MATCH Commun. Math. Comput. Chem., 68 (2012), 217-230.
[13] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: modeling the enthalpy of formation of alkanes, Indian J. Chem.,
37 (1998), 849-855.
[14] F. Falahati-Nezhad, A. Iranmanesh, A. Tehranian, M. Azari, Comparing the second multiplicative Zagreb coindex with some graph invariants,
Trans. Comb., 3, No 4 (2014), 31-41.
[15] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degreebased topological indices, Appl. Math. Comput., 219 (2013), 8973-8978.
[16] M. Ghorbani, N. Azimi, Note on multiple Zagreb indices, Iran. J. Math.
Chem., 3, No 2 (2012), 137-143.
[17] A. Graovac, M. Ghorbani, M. A. Hosseinzadeh, Computing fifth geometric
arithmetic index for nanostar dendrimers, J. Math. Nanosci., 1 (2011),
33-42.
[19] I. Gutman, K. C. Das, Some properties of the second Zagreb index,
MATCH Commun. Math. Comput. Chem., 50 (2004), 103-112.
[20] I. Gutman, M. Kamran Jamil, N. Akhter, Graphs with fixed number of
pendent vertices and minimal first Zagreb index, Trans. Comb., 4, No 1
(2015), 43-48.
[21] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry,
Springer-Verlag, New York (1986).
[22] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total φelectron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972),
535-538.
[23] N. Habibi, T. Dehghan-Zadeh, A. R. Ashrafi, Extremal tetracyclic graphs
with respect to the first and second Zagreb indices, Trans. Comb., 5, No
4 (2016), 35-55.
[24] S. Hayat, M. Imran, Computation of certain topological indices of nanotubes covered by C5 and C7 , J. Comput. Theor. Nanosci. 12 (2015),
1-9.
[25] S. Hayat, M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput., 240 (2014), 213-228.
[26] S. A. Hosseini, M. B. Ahmadi, I. Gutman, Kragujevac trees with minimal
atom-bond connectivity index, MATCH Commun. Math. Comput. Chem.,
71 (2014), 5-20.
[27] S. Imran, M. Hussain, M. K. Siddiqui, M. Numan, Super face d-antimagic
labeling for disjoint union of toroidal fullerenes, . Math. Chem., 55, No 3
(2017), 849-863.
[28] R. Kazemi, Probabilistic analysis of the first Zagreb index, Trans. Comb.,
2, No 2 (2013), 35-40.
[29] M. Imran, S. Hayat, M. Y. H. Mailk, On topological indices of certain
interconnection networks, Appl. Math. Comput. 244 (2014), 936-951.
[30] D. J. Klein, Elemental benzenoids, J. Chem. Inf. Comput. Sci., 34 (1994),
453-459.
[31] S. Konstantinidou, The selective extra stage butterfly, IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., 1 (1992), 502-506.
[32] X. Liu, Q. P. Gu, Multicasts on WDM all-optical butterfly networks, J.
Inf. Sci. Eng., 18 (2002), 1049-1058.
[33] P. D. Manuel, M.I. Abd-El-Barr, I. Rajasingh, B. Rajan, An efficient representation of Benes networks and its applications, J. Discrete Algorithms,
6 (2008), 11-19.
[34] J. Rada, R. Cruz, I. Gutman, Benzenoid systems with extremal vertexdegree-based topological indices, MATCH Commun. Math. Comput.
Chem., 72 (2014), 125-136.
[35] P. S. Ranjini, V. Lokesha, I. N. Cangul, On the Zagreb Indices of the Line
Graphs of the Subdivision Graphs, Appl. Math. and Comput., 218, No 3
(2011), 699-702.
[36] G. H. Shirdel, H. RezaPour, A. M. Sayadi, The hyper-Zagreb Index of
graph operations, Iran. J. Math. Chem. 4, No 2 (2013), 213-220.
[37] M. K. Siddiqui, M. Imran, A. Ali, On Zagreb indices, Zagreb polynomials
of some nanostar dendrimers, Appl. Math. Comput., 280 (2016), 132-139.
[38] M. Togan, A. Yurttas, I. N. Cangul, All versions of Zagreb indices and
coindices of subdivision graphs of certain graph types, Advanced Studies
in Contemp. Math., 26, No 1 (2016), 227-236.
[39] M. Togan, A. Yurttas, I. N. Cangul, Zagreb and multiplicative Zagreb
indices of r-subdivision graphs of double graphs, Scientia Magna, 12, No
1 (2017), 115-119.
[40] H. Wiener, Structural determination of paraffin boiling points, J. Amer.
Chem. Soc., 69 (1947), 17-20.
[41] A. William, A. Shanthakumari, Minimum cycle covers of butterfly and
Benes network, Int. J. Math. Soft Comput., 2, No 1 (2012), 93-98.
[42] J. Xu, Topological Structure and Analysis of Interconnection Networks,
Kluwer Academic Publishers (2001).