A VARIATIONAL APPROACH TO IMPULSIVE
STURM-LIOUVILLE DIFFERENTIAL EQUATIONS
WITH NONLINEAR DERIVATIVE DEPENDENCE

Abstract

We study the existence and multiplicity of solutions for a class of impulsive Sturm-Liouville differential equations with nonlinear derivative dependence. By applying a critical point theory, we give some criteria to guarantee that our impulsive problem has at least three solutions under rather different assumptions and an exact interval of parameter $\lambda$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 5
Year: 2019

DOI: 10.12732/ijam.v32i5.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] L. Bai, B. Dai, Existence and multiplicity of solutions for impulsive boundary value problem with a parameter via critical point theory, Math. Comput. Modelling , 53 (2011), 1844-1855.
  2. [2] L. Bai, B. Dai, Existence of nonzero solutions for a class of damped vibration problems with impulsive effects, Appl. Math., 59 (2014), 145-165.
  3. [3] L. Bai, B. Dai, Three solutions for a p-Laplacian boundary value problem with impulsive effects, Appl. Math. Comput., 217 (2011), 9895-9904.
  4. [4] G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations, 244 (2008), 3031-3059.
  5. [5] G. Bonanno, G. D’Agu`ı, A Neumann boundary value problem for the Sturm-Liouville equation, Appl. Math. Comput., 208 (2009), 318-327.
  6. [6] G. Bonanno, B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166-1176.
  7. [7] G. Bonanno, B. Di Bella, J. Henderson, Existence of solutions to secondorder boundary-value problems with small pertubations of impulses, Electron. J. Diff. Equ., 2013 (2013), Paper No 126, 1-14.
  8. [8] G. Bonanno, B. Di Bella, J. Henderson, Infinitely many solutions for a boundary value problem with impulsive effects, Bound. Value Probl., 2013 (2013), 2013-278.
  9. [9] G. Caristi, M. Ferrara, S. Heidarkhani, Y. Tian, Nontrivial solutions for impulsive Sturm-Liouville differential equations with nonlinear derivative dependence, Differ. Integral Equ., 30 (2017), 989-1010.
  10. [10] G. D’Agu`ı, Infinitely many solutions for a double Sturm-Liouville problem, J. Global Optim., 54 (2012), 619-625.
  11. [11] G. D’Agu`ı, B. Di Bella, S. Tersian, Multiplicity results for superlinear boundary value problems with impulsive effects, Math. Meth. Appl. Sci., 39 (2016), 1060-1068.
  12. [12] X.L. Fan, D. Zhao, On the spaces Lp(x)( ) and Wm,p(x)( ), J. Math. Anal. Appl., 263 (2001), 424-446.
  13. [13] M. Galewski, G. Molica Bisci, Existence results for one-dimensional fractional equations, Math. Methods Appl. Sci., 39, No 6 (2016), 1480-1492.
  14. [14] J.R. Graef, S. Heidarkhani, L. Kong, Infinitely many solutions for systems of Sturm-Liouville boundary value problems, Results Math., 66 (2014), 327-341.
  15. [15] J.R. Graef, S. Heidarkhani, L. Kong, Nontrivial solutions for systems of Sturm-Liouville boundary value problems, Differ. Equ. Appl., 6, No 2 (2014), 255-265.
  16. [16] S. Heidarkhani, Multiple solutions for a class of impulsive perturbed Sturm-Liouville differential equations with nonlinear derivative dependence, Preprint.
  17. [17] L. Kong, Existence of solutions to boundary value problems arising from the fractional advection dispersion equation, Electron. J. Diff. Equ., 106 (2013), 1-15.
  18. [18] Y.H. Lee, X. Liu, Study of singular boundary value problems for second order impulsive differential equation, J. Math. Anal. Appl., 331 (2007), 159-176.
  19. [19] J.J. Nieto, R. Rodr´ıguez-L´opez, New comparison results for impulsive integro-differential equations and applications, J. Math. Anal. Appl., 328 (2007), 1343-1368.
  20. [20] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. TMA, 70 (2009), 3084-3089.
  21. [21] H.R. Sun, Y.N. Li, J.J. Nieto, Q. Tang, Existence of solutions for SturmLiouville boundary value problem of impulsive differential equations, Abstr. Appl. Anal. 2012 (2012), Article ID 707163.
  22. [22] Y. Tian, W. Ge, Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 51 (2008), 509-527.
  23. [23] Y. Tian, W. Ge, Multiple positive solutions for a second order SturmLiouville boundary value problem with a p-Laplacian via variational methods, Rocky Mountain J. Math., 39 (2009), 325-342.
  24. [24] Y. Tian, W. Ge, Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods, J. Math. Anal. Appl., 387 (2012), 475-489.
  25. [25] Y. Tian, W. Ge, Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Anal. TMA, 72 (2010), 277-287.
  26. [26] L. Zhang, W. Ge, Solvability of a kind of Sturm-Liouville boundary value problems with impulses via variational methods, Acta. Appl. Math., 110 (2010), 1237-1248.