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1. Introduction

We refer to our papers Petridi [8] and Petridi [9] for concepts, notations, defi-
nitions, notes and remarks.

In Subsection 4.1 of Petridi [8], we briefly outlined our ideas of generalizing
the method of tables to algebras with several operations

V1(x1, x2, · · · , xα1), V2(x1, x2, · · · , xα2), · · · , Vk(x1, x2, · · · , xαk
)

satisfying axiomatically defined identities and indicated the way of how to pro-
ceed. The project is now carried out. The technique applied is the same as
in Formal Part of Petridi [8]. The crucial fact that the number IV1V2···Vk

n of
formally reducible identities can be calculated by exactly the same method
used for IV1

n (= In) seems to hold true. Algebras with only binary operations
are discussed. For algebras with two binary operations V (x, y) and W (x, y),
the proof is given in detail.
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Algebras with operations of any arity can be treated by reduction to a well
defined set of algebras with binary operations.

Research and exposition of the general theory are impeded by problems
of construction and inspection of the tables Tn whenever n is greater than 3.

This is due to the fast growth of the Catalan numbers (Sn ∼ 4n

π
1
2n

3
2

) and

their generalizations, let alone problems of printing and publication. Programs
designed to seek the structures resulting from a given identity failed after a few
steps (blow-ups). Exposition therefore is limited to illustrate the theory on the
worked example of table T3.

Still, the concrete new findings reached in this case corroborate further our
fundamental thesis that there is a scarcity of existing mathematical structures
in the sense that the frequency of irreducible identities goes to zero with
increasing n. Seen historically, this also explains why mathematics, in the
course of time, has developed the way it did with associativity V (V (x, y), z) =
V (x, V (y, z)), the simplest structure, reigning supreme over the mathematical
landscape. All other essential mathematical structures, found or created by
research such as e.g. Groups, Fields, Vector Spaces, Lie Algebras, etc, ... include
in their axiom system (signature) at least one binary operation obeying the
law of associativity. We conclude with a note on the connection with Formal
Languages.

Given k operations V α1
1 (x1, x2, · · · , xα1) of arity α1,

V α2
2 (x1, x2, · · · , xα2) of arity α2, · · · ,V αk

k (x1, x2, · · · , xαk
) of arity αk, their

n-iterates containing the operation V α1
1 p1− times, the operation V α2

2 p2−
times, · · · , the operation V

αk

k pk− times are symbolized by

Jn
i

(
V α1
1 V α2

2 · · · V
αk

k

p1 p2 · · · pk

)

, αi ≥ 0, pi ≥ 0.

The order of the iterate is

n = p1 + p2 + · · · + pk

and the number of its variable places is

(α1 − 1)p1 + (α2 − 1)p2 + · · · + αk(pk − 1) + 1.

The index i runs from 1 to SV1···Vk
n . We call SV1···Vk

n the n-th Catalan number

of the structure.

The numbers SV1···Vk
n are the Taylor coefficients, at t = 0, of the formal

generating function
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φV1···Vk
(t) =

∞∑

n=0

SV1···Vk
n tn.

The sequence SV1···Vk
n can be calculated recursively from

S
V1···Vk

n+1 =
∑

x1+x2+···+xα1=n

xi≥0

SV1···Vk
x1

SV1···Vk
x2

· · · SV1···Vk
xα1

+

∑

x1+x2+···+xα2=n

xi≥0

SV1···Vk
x1

SV1···Vk
x2

· · · SV1···Vk
xα2

+

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∑

x1+x2+···+xαk
=n

xi≥0

SV1···Vk
x1

SV1···Vk
x2

· · ·SV1···Vk
xαk

.

According to E. Catalan, see Dickson [6] for more details, the number of solu-

tions of the Diophantine equation x1 + x2 + · · · + xαi
= n is

(
ai + n− 1

n

)

.

The function φV1···Vk
(t) is a solution of the functional equation

φV1···Vk
(t)− 1

t
=

k∑

i=1

(φV1···Vk
(t))αi

with the initial condition φ(0) = 1.

For k = 1, α1 = 2 we get the classical Catalan numbers Sn =
1

n+ 1

(
2n
n

)

,

which count the n-iterates (parenthesizing) of V1(x, y). Their recursion formula
is

SV1
n+1 =

∑

x1+x2=n
xi≥0

SV1
x1
SV1
x2

and the functional equation becomes

φV1(t)− 1

t
= (φV1(t))

2,

giving

φV1(t) =
1−

√
1− 4t

2t
=

∞∑

n=0

Snt
n.
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For k = 1, α1 = α, we obtain the higher Catalan numbers
1

(α− 1)n+ 1

(
αn

n

)

,

whose generating function φα(t) satisfies

φα(t)− 1

t
= (φα(t))

α.

2. Binary operations

We will now examine the case of two binary operations V (x, y) and W (x, y).
Since k = 2, α1 = α2 = 2 the corresponding generating function which gives
the number of iterates of order n is

φVW (t)− 1

t
= 2(φV W (t))2, φ(0) = 1.

Solving the quadratic equation we obtain

φVW (t) =
1−

√
1− 8t

4t
=

∞∑

n=0

2n Snt
n,

where Sn =
1

n+ 1

(
2n
n

)

are the ordinary Catalan numbers.

Hence the number of iterates of order n is SVW
n = 2nSn, n ≥ 1, the first of

which are
n

1
2
3
4
5
...

SVW
n

2
8
40
224
1344
...

.

Following the same rules of formation as done in Petridi [8], the first three
A–tables are:

T1

V xx

Wxx

T2

V V xxx WV xxx

VWxx WWxxx

V xV xx WxV xx

V xWxx WxWxx
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T3

V V V xxxx WV V xxxx · · · V V xxWxx WV xxWxx

V V Wxxxx WVWxxxx · · · VWxxWxx WWxxWxx

V V xV xxx WV xV xxx · · · V xWV xxx WxWV xxx

V V xWxxx WV xWxxx · · · V xWWxxx WxWWxxx

V V xxV xx WV xxV xx · · · V xWxV xx WxWxV xx

V V xxWxx WV xxWxx · · · V xWxWxx WxWxWxx

Because of lack of space, in T3 figure only the first two and the last two
columns, the four columns in the middle having been omitted. After labeling
these word expressions from 1 to 40, the tables can be perused as seen below.
The importance of perusal and inspection of tables was aptly pointed out by
D.H. Lehmer in his article in MAA Studies in Mathematics, Vol. 6, 1969, see
[7] and the references therein.

T1

1
2

T2

1 2
3 4
5 6
7 8

T3

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
5 6 13 14 33 34 35 36
7 8 15 16 37 38 39 40

The general table of order n has 2n lines and 2n−1 Sn−1 columns, that is
a total of 2n nSn−1 entries. For n ≥ 3 it is easy to see that some n–iterates
appear in table Tn with multiplicities higher than 1, as can be verified in table
T3. To prove it, we have to show that 2n nSn−1 > 2n Sn for n ≥ 3. The easy

proof is as follows. Using the recursion Sn =
2(2n − 1)

n+ 1
Sn−1 for the Catalan

numbers we have

2n nSn−1 > 2n Sn

nSn−1 >
2(2n − 1)

n+ 1
Sn−1

n(n+ 1) > 2(2n − 1)

The last inequality holding true for n ≥ 3, application of the pigeonhole prin-
ciple does the rest.
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All concepts and definitions of Petridi [8] relating to one binary operation
V (x, y) can be carried over literally to the present case. Regrettably, because
of the reasons explained in Section 1, we were unable to go further than table
T3. We were lucky, however, to discover that already for the incidence matrix
of this table, the fundamental theorem of Subsection 2.4 of Petridi [8], which
is the key enabling to calculate the number In of formally reducible identities,
remains true. Because of the highly peculiar nature of this property we surmise
that it is equally true for all higher tables Tn. For easy reference we repeat the
theorem hereunder.

Theorem 1. Let

1. δ(Jn
i , J

n
j ) =

{
1 if Jn

i = Jn
j reducible

0 if Jn
i = Jn

j irreducible

2. M(Jn
i ) = the multiplicity of Jn

i in table An

3. In =
∑Sn

i, j δ(J
n
i , J

n
j ) = the number of reducible n–identities

4.
∑Sn

j=1 δ(J
n
i , J

n
j ) = the number of reducible n–identities on the

i–th line of the incidence matrix of table An,

then
Sn∑

j=1

δ(Jn
i , J

n
j ) =

M(Jn
i )

∑

ν=1

(−1)ν−1

(
M(Jn

i )
ν

)

Sn−ν .

Expressed in words, the theorem says that the number of reducible n–
identities on the i–line of the incidence matrix of table An does not depend on
Jn
i but only on its multiplicity M(Jn

i ). An immediate consequence is that

In =

[n+1
2

]
∑

k=1

Tnk (

k∑

ν=1

(−1)ν−1

(
k

ν

)

Sn−ν),

where Tnk is the number of iterates in table Tn having multiplicity k. As proved
in Petridi [8], In is

In = o(1− e−
n
16 )

and the scarcity of the reducible identities is evinced by

S2
n − In = o(e−

n
26 ).
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We now will prove the validity of this theorem for table T3. To this end
we have calculated the incidence matrix relative to table T3 as shown in the
appendix attached hereto.

Proof. The proof leaps to the eye. Indeed, the four iterates J3
5 = 5, J3

6 = 6,
J3
7 = 7, J3

8 = 8 have all multiplicity 2, giving a sum
∑

1 = 14. Similarly for
the iterates J3

13, J
3
14, J

3
15, J

3
16. All other 32 iterates have multiplicity 1 with a

sum
∑

1 = 8. Hence the number IVW
3 of reducible 3–identities is

IVW
3 = 32 · 8 + 8 · 14 = 368

and the relative frequency is

IVW
3

(23 S3)2
=

368

1600
= 0.28.

The main objective is of course to prove that

lim
n→∞

IVW
n

(2n Sn)2
= 1,

which would imply that irreducible identities are getting scarce with increas-
ing n. Expressed otherwise, this would mean that there are no algebras defined
by lengthy identities involving two binary operations.

The case of algebras with more than two binary operations
V1, V2, · · · , Vλ, λ > 2, can be dealt with in the same way we did for λ = 2.
The functional equation for the generating function φV1 V2 ···Vλ

(t) turns out to
be

φV1 V2 ···Vλ
(t)− 1

t
= λ(φV1 V2 ···Vλ

(t))2

which after solving gives the corresponding “Catalan” numbers of the structure

SV1 V2 ···Vλ
n = λn Sn (Sn = n− th Catalan number).
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3. Operations of any arity

A direct approach to form the tables for several operations of arities higher than
two is well nigh impossible without the use of powerful computers. If at all even
then. We may circumvent, however, the obstacle by reducing the problem to
the binary case as follows.
Given the operations

V α1(x1, x2, · · · , xα1)

V α2(x1, x2, · · · , xα2)

· · · · · · · · · · · · · · · · · · · · ·
V αm(x1, x2, · · · , xαm)

we form their respective

(
αi

2

)

, projections on the subspaces of the variable

places
V α1
jkj(x, y) = V α1(c, · · · , c

︸ ︷︷ ︸

i

, x, c, · · · , c
︸ ︷︷ ︸

j

x c, · · · , c
︸ ︷︷ ︸

k

),

taken over all solutions of i + j + k = α1 − 2,

V α2
jkj(x, y) = V α2(c, · · · , c

︸ ︷︷ ︸

i

, x, c, · · · , c
︸ ︷︷ ︸

j

x c, · · · , c
︸ ︷︷ ︸

k

),

taken over all solutions of i + j + k = α2 − 2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

V αm

jkj (x, y) = V αm(c, · · · , c
︸ ︷︷ ︸

i

, x, c, · · · , c
︸ ︷︷ ︸

j

x c, · · · , c
︸ ︷︷ ︸

k

),

taken over all solutions of i + j + k = αm − 2. Since all these projections are
binary operations, we can apply to them the results of the previous section 3
and conclude that the fundamental theorem holds true.

4. Connection with formal languages

Seen from the angle of Formal Languages, a set of operations and their iterates
is just the Language L generated by the grammar G(V α1

1 , V α2
2 , · · · , V αk

k , x)
with

x ∈ L : the starting word
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and the derivation rules of words

If W1 ∈ L

If W2 ∈ L

· · · · · · · · ·
If Wk ∈ L

Then V α1
1 Wx1Wx2 · · ·Wxα1

∈ L

Then V α2
2 Wy1Wy2 · · ·Wyα2

∈ L

· · · · · · · · · · · · · · · · · ·
Then V

αk

k Wz1Wz2 · · ·Wzαk
∈ L

where the indexes x1, · · · xα1 , y1, · · · yα2 , · · · z1, · · · zαk
, run over all permutations

with repetitions of {1, 2, · · · , k}.

The reverse is also true. If in the alphabet of the grammar all non-terminal
symbols are replaced by x and the terminal symbols are replaced respectively by
V α1
1 , V α2

2 , · · · V αk

k , we obtain the structure with operations V α1
1 , V α2

2 , · · · V αk

k .

For further reading on the subject see Sub-section 4.2 of Petridi [8]. Whether
precise analytical results, analogous to those of Petridi [8] and the present pa-
per, hold for all Formal Language as well as their uses in Information Theory
is, to our knowledge, an open field to be explored.
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A. Appendix

Incidence matrix ‖δ(J3
i , J

3
j )‖ relative to T3

(J3
i is denoted by i. Blank spaces mean 0′s)

i\j 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 40
∑

i 1 M(J3

j )

1 1 1 1 1 1 1 1 1 8 1
2 1 1 1 1 1 1 1 1 8 1
3 1 1 1 1 1 1 1 1 8 1
4 1 1 1 1 1 1 1 1 8 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 2
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 2
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 2
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 2
9 1 1 1 1 1 1 1 1 8 1
10 1 1 1 1 1 1 1 1 8 1
11 1 1 1 1 1 1 1 1 8 1
12 1 1 1 1 1 1 1 1 8 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 2
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 2
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 2
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 2
17 1 1 1 1 1 1 1 1 8 1
18 1 1 1 1 1 1 1 1 8 1
19 1 1 1 1 1 1 1 1 8 1
20 1 1 1 1 1 1 1 1 8 1
21 1 1 1 1 1 1 1 1 8 1
22 1 1 1 1 1 1 1 1 8 1
23 1 1 1 1 1 1 1 1 8 1
24 1 1 1 1 1 1 1 1 8 1
25 1 1 1 1 1 1 1 1 8 1
26 1 1 1 1 1 1 1 1 8 1
27 1 1 1 1 1 1 1 1 8 1
28 1 1 1 1 1 1 1 1 8 1
29 1 1 1 1 1 1 1 1 8 1
30 1 1 1 1 1 1 1 1 8 1
31 1 1 1 1 1 1 1 1 8 1
32 1 1 1 1 1 1 1 1 8 1
33 1 1 1 1 1 1 1 1 8 1
34 1 1 1 1 1 1 1 1 8 1
35 1 1 1 1 1 1 1 1 8 1
36 1 1 1 1 1 1 1 1 8 1
37 1 1 1 1 1 1 1 1 8 1
38 1 1 1 1 1 1 1 1 8 1
39 1 1 1 1 1 1 1 1 8 1
40 1 1 1 1 1 1 1 1 8 1

From the above table we get

IVW
3 =

40∑

i=1

40∑

j=1

1 = 368.
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