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Abstract: This paper analyzes the Plant-Soil Models with functional nitrogen
uptake kinetics. In this work we focus on the effects of using different forms of
nitrogen uptake kinetic function for the dynamics of Plant-Soil model including
Holling type II and III. We present the derivations of these two different type
of functional kinetics for the general enzyme-substrate reaction process. For
the Plant-Soil Model the local existence and positive invariance of the solution
are investigated. Also some conditions to guarantee that the model possesses a
unique positive equilibrium point are suggested.
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1. Introduction

The Plant-Soil Model is set up to simulate the effect of temperature increase
on ecosystem carbon (C) storage and the cycling of carbon (C) and nitrogen
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(N) between plants and soil pool that is shallow and active. In this model the
aboveground biomass is represent by P as the product of biogeometric reaction,
soil carbon by Cs, soil nitrogen by N , plant carbon by Cp. The changes of these
quantities in time for t ∈ (0,∞) are described as follows:
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dP

dt
= −mP + µ f(N)P,

dCs

dt
= mP − ν Cs,

dN

dt
= η − lnN − µ f(N)P + (1− q)ν Cs,

dCp

dt
= γν Cs − lcCp,

(1)

where the initial values P (0), Cs(0), N(0), Cp(0) are all positive, f(N) is a
function of N which represents density dependent nitrogen uptake kinetics, and
m, µ, ν, η, ln, lc, q, γ represent positive constants. The details on the physical
meanings of the coefficients and the agricultural, biochemical, biogemetrical
backgrounds of this type of models may be found in [8], [10], [11] and references
therein. Especially in [10] the Plant-Soil Model (1) is used to simulate the effects
of climate warming on the quantities of carbon and nitrogen and their rate of
changes in terrestrial ecosystem in arctic Alaska. In [10] the nitrogen uptake
kinetic function f(N) is set up as

f(N) =
aN

b+N
, (2)

where a, b are positive constant. The function in (2) is called as Holling type
II kinetics (see [5], [6]). It is also called as Michaelis-Menten kinetics (see [8],
[9]).

In this work we focus on the effects of different forms of nitrogen uptake
kinetic function f(N) for the dynamics of the Plant-Soil model (1) including
Holling type II (2) and Holling type III (see [5], [6]) which is

f(N) =
cN2

d+N2
, (3)

where c, d are positive constant.

Nitrogen uptake process in plants is enzyme-substrate reaction where soil
nitrogen N is the substrate and with an enzyme the biomass P is produced by
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plants (see [2]). In Section 2, we present the derivations of these two different
type of functional kinetics for the general enzyme-substrate reaction process.
In Section 3, we analyze the Plant-Soil Model (1) with the two different forms
of kinetic functions as in (2), (3).

2. Derivations of different types of Functional Kinetics

The process in plants that involves nitrogen uptake and biomass product is
an enzyme-substrate biochemical reaction. Let us observe general enzyme-
substrate reaction system with enzyme E, substrate S, enzyme-substrate com-
plex H, and product P :

E + S
k+
1

⇋

k−
1

H
k+
2→ E + P, (4)

where k+1 , k
−
1 , k

+
2 are positive constants.

According to the law of mass action, we write out the governing equations
for reaction (4) as follows. Here the variables E, S, H and P represent concen-
tration of the enzyme, the substrate, the enzyme-substrate complex, and the
product, respectively:

dE

dt
= −k+1 ES + (k−1 + k+2 )H, (5)

dS

dt
= −k+1 ES + k−1 H, (6)

dH

dt
= k+1 ES − (k−1 + k+2 )H, (7)

dP

dt
= k+2 H. (8)

Many enzyme-substrate reaction models usually assume the quasi-steady-state
approximation that the enzyme-substrate complexes turns into equilibrium
state instantaneously with enzyme and substrate concentration (see [10]). Un-
der this assumption, in equation (7)

dH

dt
≈ 0

instantaneously, thus we have

ES = kH, where k =
k−1 + k+2

k+1
. (9)
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Substituting the relations in equation (9) to equation (6)

dS

dt
= −k+1 kH + k−1 H = −k+2 H. (10)

During short time period in the beginning of the reaction, the amount of gener-
ated product P is very small, so for the total enzyme concentration Ẽ the total
substrate concentration S̃ we set

E +H = Ẽ, S +H = S̃. (11)

Now equations (9) and (11) are solved:

(Ẽ −H)(S̃ −H) = kH,

to the quadratic equation

H2 − (k + Ẽ + S̃)H + ẼS̃ = 0 (12)

that has two positive solutions

H =
1

2

(

(k + Ẽ + S̃)±
√

(k + Ẽ + S̃)2 − 4ẼS̃

)

. (13)

Here, considering that from (11)

H <
1

2

(

Ẽ + S̃
)

,

we have

H =
1

2

(

(k + Ẽ + S̃)−
√

(k + Ẽ + S̃)2 − 4ẼS̃

)

=
1

2
(k + Ẽ + S̃)

(

1−
√

1− 4ẼS̃

(k + Ẽ + S̃)2

)

.

(14)

Now we observe two kinds of approximation of H in (14) as a function of two
variables Ẽ and S̃. First if we use the linear approximation for the function√
1− x regarding the quantity 4ẼS̃

(k+Ẽ+S̃)2
is small enough, we have

H ≈ 1

2
(k + Ẽ + S̃)

(

1−
{

1− 1

2
· 4ẼS̃

(k + Ẽ + S̃)2

})

=
ẼS̃

k + Ẽ + S̃
.

(15)
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Secondly by comparing the three dimensional plots we see that the function H

in (14) would be approximated as

H ≈ Ẽ(S̃)2

k + Ẽ + (S̃)2
. (16)

An example set of graphs of the function H of two variables Ẽ and S̃ in (14),
the approximation in (15), and the approximation in (16) are shown in Figure
1. Figure 2 shows in certain range of the variables, the approximation (16) is
more accurate than the approximation (15).

Figure 1: Example set of graphs of (1) the function H in (14), (2)
the approximation in (15), and (3) the approximation in (16)

Using the approximation (15) and furthermore assuming that k+ S̃ is dom-
inant compare to Ẽ, we would use the form of the function H as

H =
ẼS̃

k + S̃
. (17)

Substituting the function H in (17) to equation (10), we obtain the Holling
type II form of the kinetic relation:

dS

dt
= − aS

k + S
, (18)
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Figure 2: Example set of graph comparison of (1) the function H in
(14) and the approximation in (15), (2) the function H in (14) and
the approximation in (16)

where a = k+2 Ẽ regarding Ẽ as a constant approximately and S is used in the
place of S̃ as usual in the modeling of enzyme-substrate reactions.

Using the approximation (16) and furthermore assuming that k + (S̃)2 is
dominant compare to Ẽ, we would use the form of the function H as

H =
Ẽ(S̃)2

k + (S̃)2
. (19)

Substituting the function H in (19) to equation (10), we obtain the Holling
type III form of the kinetic relation :

dS

dt
= − aS2

k + S2
, (20)

where a = k+2 Ẽ regarding Ẽ as a constant approximately and S is used in the
place of S̃.

3. Analysis of Plant-Soil Model with two different kinetic functions

For the Plant-Soil Model (1) we consider the Holling type II and III kinetic
functions as in (2) and (3). In (1) the right-hand side of each equations are
continuous functions of the variables P , Cs, N , Cp, so the local existence of
the solution to the system of differential equations (1) is guaranteed. And
to examine the positivity of the solution to the system (1) we would apply
Gronwall’s Inequality as in the following theorem (refer p.169 in [4] for example).
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Theorem 1 (Gronwall’s Inequaity-differential form). Suppose g, h : [0, T ] →
R are continuous functions, and u : [0.T ] → R is a C1 function and satisfies

u′(t) ≤ g(t)u(t) + h(t) for t ∈ [0, T ].

Then

u(t) ≤ u(0) e
∫
t

0
g(t) dt +

∫ t

0

(

e
∫
t

0
g(t) dt

)

h(s) ds.

Lemma 2. The region Ω = {(P,Cs, N,Cp) | P > 0, Cs > 0, N > 0, Cp >

0} in R
4 is invariant for the system (1).

Proof. In R
4 on the hyperplane N = 0 the system (1) is reduced to

dP

dt
= −mP, (21)

dCs

dt
= mP − ν Cs, (22)

dCp

dt
= γν Cs − lcCp. (23)

Solving the differential equation (21) directly we obtain a nonnegative bounded
solution P (t). Now substituting this function P (t) to the right-hand side of
(22) and applying Gronwall’s Theorem 1 it is shown that the solution Cs(t) is a
nonnegative bounded function. Similarly the solution Cp(t) of equation (23) is
shown to be a nonnegative bounded function. Thus on the hyperplane N = 0,
solution orbits of the system (1) stay in the positive part {(P,Cs, Cp) | P >

0, Cs > 0, Cp > 0}.
For the hyperplanes P = 0, Cs = 0, Cp = 0 the same results are derived as

well. From the fact that different orbits do not intersect each other, we conclude
that the region Ω in R

4 is invariant for the system (1).

Lemma 3. For the system (1) with the Holling type II kinetic functions

f(N) =
aN

k +N

where a and k are positive constants, assume the condition

aµ > m, and η > ln · mk

aµ−m
. (24)
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And let us denote

α =
1

q

(

η − ln · mk

aµ−m

)

.

Then the Plant-Soil Model (1) has a unique positive constant equilibrium point

(P ,Cs, N,Cp) in R
4, where

P =
1

m
α, Cs =

1

ν
α, N =

mk

aµ−m
, Cp =

γ

lc
α. (25)

Proof. For each equation in the system (1), let the derivatives of the func-
tions to be zero to find equilibrium points. Then we have a system of four
algebraic equations.

0 = −mP + µ f(N)P , (26)

0 = mP − ν Cs, (27)

0 = η − lnN − µ f(N)P + (1− q)ν Cs, (28)

0 = γν Cs − lcCp. (29)

Since we look for positive equilibrium points, from equation (26) we have

m

µ
= f(N) =

aN

k +N
,

and find a unique solution

N =
mk

aµ−m
. (30)

Solving equations (26), (27) and (27) we have

0 = η − lnN − qmP.

Thus we obtain

P =
1

qm

(

η − ln N
)

=
1

m
α,

and

Cs =
m

ν
P =

1

ν
α.

And finally from equation (29) we have

Cp =
γν

lc
Cs =

γ

lc
α.
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Lemma 4. For the system (1) with the Holling type III kinetic functions

f(N) =
aN2

k +N2

where a and k are positive constants, assume the condition

aµ > m, and η2 > l2n · mk

aµ−m
. (31)

And let us denote

β =
1

q

(

η − ln

√

mk

aµ−m

)

.

Then the Plant-Soil Model (1) has a unique positive constant equilibrium point

(P ,Cs, N,Cp) in R
4, where

P =
1

m
β, Cs =

1

ν
β, N =

√

mk

aµ−m
, Cp =

γ

lc
β. (32)

Proof. Similar to the proof of Lemma 3.

For an example to see the results obtained in Lemma 3 and Lemma 4, one
may use the parameter values that suggested in [10] as m = 0.01, µ = 0.33,
ν = 0.0002, η = 0.1, ln = 0.015, lc = 1, q = 0.5, γ = 26, a = 1, k = 10. With
this set of parameter values, in Lemma 3 where the nitrogen uptake kinetic
function is Holling type II form

f(N) =
aN

k +N
,

we have

aµ−m = 0.32, η − ln · mk

aµ−m
= 0.00953125,

so the condition (24)

aµ > m, and η > ln · mk

aµ−m

is satisfied, and thus the existence of the positive equilibrium points is guaran-
teed. Also in Lemma 4 with this set of parameter values, where the nitrogen
uptake kinetic function is Holling type III form

f(N) =
aN2

k +N2
,
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we have

aµ−m = 0.32, η2 − l2n · mk

aµ−m
= 0.009296875,

so the condition (31)

aµ > m, and η2 > l2n · mk

aµ−m

is satisfied, and thus the existence of the positive equilibrium points is guaran-
teed in this case.

4. Conclusions

In this work we focus on the effects of different forms of nitrogen uptake kinetic
function f(N) for the dynamics of the Plant-Soil model (1) including Holling
type II and Holling type III. These two different types of functional kinetics
are derived from the enzyme-substrate biochemical reaction process in plants
that involves nitrogen uptake and biomass product under the assumption of
the quasi-steady-state approximation. The Plant-Soil Model (1) with Holling
type II and III kinetic functions is analyzed in terms of the local existence and
the positivity of the solutions. A set of conditions for the parameters in the
Plant-Soil Model (1) are suggested to guarantee the existence of the positive
equilibrium points in the case of Holling type II and III kinetic functions, re-
spectively. And we check with an example in [10] for these sets of conditions
for the parameters.

The results could be directly applied to the Plant-Soil model in the field of
biogeochemical studies for temperature warming effects. Also related to many
ecological studies (for example, [1], [3], [7]) dealing with Michaelis-Menten ki-
netics, that is Holling type II, it would be worth considering extending investi-
gations with Holling type III kinetics for subtle difference of response behaviors.
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