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Abstract: A pseudo magic square (PMS) of order n is an n×n square matrix
whose entries are integers such that the sum of the numbers of any row and any
column is the same number, the magic constant. It is a generalization of the
concept of magic squares. In this paper we investigate new algebraic structures
of PMS’s. We explore the group structure of PMS’s to show that the quotient of
the group of PMS’s of order n by its subgroup with zero constant is isomorphic
to the infinite additive group of integers, where theisomorphism is constructed
by means of the magic constants of the corresponding PMS’s. We investigate
the ring structure of PMS’s to characterize nilpotent and idempotent PMS’s as
well as we show that the set of PMS’s of zero constant is a two-sided ideal in the
ring of PMS’s. Thus, we can define the quotient ring of PMS’s. Moreover, we
introduce an invariant and a weak invariant of PMS’s and show some results
derived from such definitions. In particular, we show that the set of weak
invariants of PMS’s forms a Z-module under the pointwise addition and scalar
multiplication.
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1. Introduction

The concept of magic square is well-known in the literature. The Loh-Shu
magic square
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


4 9 2
3 5 7
8 1 6




is the oldest known magic square and its invention is attributed to Fuh-Hi (2858-
2738 a.C.), [1]. There exist interesting papers available in the literature dealing
with investigations on magic squares [3, 1, 10, 7, 2, 4]. Bremner [3] investigated
magic squares of order three whose elements are all perfect squares, exhibiting
a three-by-three magic square with seven distinct squares. Xin [10] constructed
all magic squares of order three. Loly et al. [7] investigated the eigenvalues
of low order singular and non-singular magic squares. Beck and Herick [2]
enumerated the 4 × 4 magic squares. Lee et al. [6] investigated necessary
and sufficient condition for a regular magic square to be nonsingular and the
they construct some magic squares. Chan et al. [4] presented a construction
of regular classical magic squares that are nonsingular for all odd orders. by
utilizing circulant matrices.

In this paper, as it was mentioned in Abstract, we are interested in the
investigation of new algebraic structures of pseudo magic squares, that is, new
structures on n × n matrices with integer entries. In particular, we introduce
an invariant and a weak invariant of PMS’s and show some results derived from
such definitions.

The paper is arranged as follows. Section 2 presents a brief review of basic
concepts on pseudo magic squares. In Section 3 we present the contributions of
the paper. More precisely, in Subsection 3.1, we characterize the set of PMS’s
based on its algebraic structures. For example, we show that the quotient group

(Pn/P
(0)
n ,+) is isomorphic to (Z,+), where Pn is the set of all PMS’s of order

n, and P
(0)
n is the set of PMS’s of order n with zero constant (see Theorem 3.6).

We study left, right and two-sided ideals on Pn (see Proposition 3.12). As

a consequence, we show that the ordered triple (Pn/P
(0)
n ,+, ·) is a ring with

unit (see Theorem 3.13). We also investigate pseudo magic squares which are
nilpotent (idempotent) (see Proposition 3.14). In Subsection 3.2, we intro-
duce an invariant and a weak invariant of pseudo magic squares and we show
some results derived from these definitions. In particular, we show that the set
of invariants under composition of functions is a monoid (see Theorem 3.16).
Moreover, we prove that the set of weak invariants of PMS’s forms a Z-module
under the usual pointwise addition of functions and ·sc is the usual pointwise
multiplication of a function by a (integer) scalar (see Theorem 3.19). Finally,
in Section 4, we give a summary of the main results of this work.
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2. Preliminaries on pseudo magic squares

Notation. In this paper, Z denotes the ring of integers endowed with the
usual addition and multiplication. R means the field of real numbers under
usual addition and multiplication. The set of square matrices of order n with
entries in some ring (R,+, ·) is denoted by Mn(R), and the set of m×nmatrices
with entries in R is denoted by Mm×n(R).

Let us recall the concept of pseudo magic square.

Definition 2.1. ([5, Definition 2.1]) Let n be a positive integer. A
pseudo magic square An of order n is an element of Mn(Z) such that the sum
of the numbers of any row and any column is the same number a, the pseudo
magic constant (constant for short).

The set of pseudo magic squares (PMS)’s of order n is denoted by Pn.

Example 2.1. An interesting example is a PMS of order n whose rows
are cyclic shifts of a given n-vector (a1, . . . , an) with integer entries:




a1 a2 · · · an
an a1 · · · an−1

· · · · · · · · · · · ·
a2 a3 · · · a1


 .

This square is, in fact, a Latin square of order n, i.e., an n×n matrix such that
every row and every column is a permutation of an n-set S (see [11] for more
details about Latin squares).

3. The new results

In this section we present our contributions on pseudo magic squares. More
precisely, we explore algebraic structures of PMS’s, as it was said previously.
We begin by recalling some basic concepts and by showing some new auxiliary
results.

Let (R,+, ·) be a ring and assume that Am×n = [aij ] ∈ Mm×n(R) and
Br×s = [bij] ∈ Mr×s(R). Recall that the Kronecker product Am×n ⊗ Br×s of
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Am×n and Br×s is the mr × ns matrix given by

Am×n ⊗Br×s =




a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
...

...
am1B am2B · · · amnB


 .

Now, we define the direct sum of PMS’s (see also [5, Theorem 3.3]).

Definition 3.1. Let An and Bn be two PMS’s of order n. The direct
sum An ⊕Bn of An and Bn is a matrix in M2n(Z) defined as

An ⊕Bn =

[
An Bn

Bn An

]
.

We next introduce the natural concept of sub pseudo magic square.

Definition 3.2. Let An be a PMS of order n. We say that Bk is a
sub pseudo magic square (SPMS for short) of An of order k if k ≤ n and if Bk

is itself a PMS of order k.

Keeping these concepts in mind, we are now able to show the first contri-
bution of this paper.

Proposition 3.1. Let An = [aij ] and Bn = [bij ] be two PMS’s of
order n and constants a and b, respectively. Then the following hold:
(1) The direct sum An ⊕Bn is a PMS of order 2n with constant a+ b.
(2) There exists a PMS of order 2kn with constant 2k−1(a+ b), where k ≥ 1 is
a positive integer.
(3) The product AnBn is a PMS of order n with constant ab. In particular,
(An)

m is a PMS of order n with constant am.
(4) The set of PMS’s of order n is a Z-algebra under the usual addition and
multiplication of matrices and scalar multiplication of a matrix by a (integer)
scalar.
(5) The Kronecker product An ⊗Bn is a PMS of order n2 with constant ab.
(6) There exists a PMS of order n+ 1 derived from An with constant a.
(7) If An is a PMS of order n and constant a, then its transpose At

n is also a
PMS of order n and constant a.
(8) Let n ≥ 1 be an integer. Then there exists a PMS of order n and constant



NEW STRUCTURES IN PSEUDO MAGIC SQUARES 885

c, for every c ∈ Z.
(9) Every PMS has at least one SPMS.

Proof. (1) This is part of the proof of Theorem 3.3 in [5].
(2) We utilize induction on k. From Item (1), it follows that C2n = An⊕Bn

is a PMS of order 2n with constant a+ b; so the result holds for k = 1. Assume
that the result is true for k = t. Then there exists a PMS P(2tn) of order 2tn
with constant 2t−1(a + b), t ≥ 1. Applying again Item (1) to the same PMS
P(2tn), one has a new PMS Q(2t+1n) of order 2

t+1n with constant 2t(a + b), as
required.

(3) This result is well-known.
(4) This is a well-known result.
(5) We first compute the sum of the elements of the n(i − 1) + r-th row,

where 1 ≤ r ≤ n:

ai1[br1 + br2 + . . .+ brn] +

ai2[br1 + br2 + . . .+ brn] +

+ . . .+

ain[br1 + br2 + . . .+ brn] +

= [ai1 + ai2 + . . . + ain]b = ab.

The sum of the elements of the n(j − 1) + t-th column (1 ≤ t ≤ n) is

a1j[b1t + b2t + . . .+ bnt] +

a2j[b1t + b2t + . . .+ bnt] +

+ . . .+

anj[b1t + b2t + . . .+ bnt] +

= [a1j + a2j + . . . + anj]b = ab.

Therefore, it follows that An ⊗Bn is a PMS with constant ab.
(6) It suffices to define the PMS A∗

n+1 as follows:

A∗
n+1 =

[
01×n a
A 0n×1

]
.

It is clear that A∗
n+1 has order n+ 1 and constant a.

(7) Immediate.
(8) Let n ≥ 1 be an integer. If c = 0, then we take the zero matrix. If c = 1,

it suffices to consider the identity matrix In of order n. If c = −1 we consider
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the diagonal matrix of order n with all entries equal to −1. Analogously, for
each integer r, we take the diagonal matrix of order n with all entries equal to
r, and we are done.

(9) Note that each PMS is a sub pseudo magic square over itself.

Remark 3.2. Note that Items (1), (5), (6) of Proposition 3.1 are
new methods to construct directly new PMS’s from old ones. In fact, we can
construct several new families of PMS’s from these methods.

3.1. Algebraic structures in pseudo squares

In this section we present new results with respect to the algebraic structures
in PMS’s. We begin by recalling the following result of [5].

Theorem 3.3. ([5, Theorem 3.1] The ordered pair (Pn,+) is an
abelian group, where the operation + is the usual addition of matrices.

Although the group (Pn,+) is abelian, it is not cyclic, as states the following
proposition.

Proposition 3.4. The group (Pn,+) is not cyclic.

Proof. Seeking a contradiction, assume that An is a generator of Pn. We know
that if An has constant c then their powers have constant mc, where m ∈ Z

(in the case of m = 0 we assume that the zero power of An is the zero matrix).
If An has constant zero, from Item 7 of Proposition 3.1 and from the previous
discussion, An cannot be a generator. From the same argument, An cannot
have constant c > 1 nor c < −1. Thus, let us consider that the generator An

has constant c = 1. We know there exist at least two PMS’s with constant
c = 1, namely, the identity In of order n and the PMS Jn of order n given by

Jn =




0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

... · · ·
...

...
...

1 0 · · · 0 0 0




.

Hence, An cannot be a generator. The same argument shows that none PMS
with constant c = −1 can be a generator. Therefore, (Pn,+) is not cyclic, and
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the proof is complete.

The set of PMS’s with zero constant is a normal subgroup of (Pn,+), as
states the next result.

Proposition 3.5. The ordered pair (P
(0)
n ,+) is a normal subgroup of

(Pn,+), where P
(0)
n is the set of all PMS’s of order n with zero constant.

Proof. We know that the identity PMS [0]n×n belongs to P
(0)
n . The sum of

PMS’s in P
(0)
n is also a PMS in P

(0)
n . Furthermore, if An ∈ P

(0)
n then −An ∈

P
(0)
n . Since (Pn,+) is an abelian group, then their subgroups are normal. In

particular, (P
(0)
n ,+) is normal. The proof is complete.

We next show that the quotient group is essentially the infinite cyclic group
of integers.

Theorem 3.6. Let n ≥ 1 be an integer. Then the quotient group

(Pn/P
(0)
n ,+) is isomorphic to (Z,+).

Proof. First of all, notice that from Proposition 3.5, it follows that P
(0)
n is a

normal subgroup of (Pn,+). Thus the quotient group makes sense.

Let f : Pn/P
(0)
n −→ Z be the function defined by

f(An + P(0)
n ) = cAn

,

where cAn
is the constant of An. We will show that f is an isomorphism.

(i) f is well-defined. Assume that An +P
(0)
n = Bn +P

(0)
n . Then An −Bn ∈

P
(0)
n . This implies that An−Bn has constant equal to zero, that is, c(An−Bn) = 0.

From the proof of Theorem 3.3, we know that c(An−Bn) = cAn
− cBn

; hence

cAn
= cBn

. Therefore, f(An + P
(0)
n ) = f(Bn + P

(0)
n ).

(ii) f is homomorphism. Let An + P
(0)
n and Bn + P

(0)
n be two cosets in

Pn/P
(0)
n . We have:

f([An + P(0)
n ] + [Bn + P(0)

n ])
def
= f([An +Bn] + P(0)

n )
def
= c(An+Bn)

= cAn
+ cBn

= f(An + P(0)
n ) + f(Bn + P(0)

n ).
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(iii) f is injective. Assume that f(An + P
(0)
n ) = f(Bn + P

(0)
n ); so cAn

=

cBn
, This implies that c(An−Bn) = 0, i.e., An − Bn ∈ P

(0)
n . Thus it follows

An + P
(0)
n = Bn + P

(0)
n , that is, f is injective.

(iv) f is surjective. Let z be an integer. From Proposition 3.1 Item 7,
there exists a PMS An with constant z. Hence, it suffices to consider the coset

An + P
(0)
n and we have f(An + P

(0)
n ) = cAn

= z. Consequently, f is surjective.

These steps show that f is an isomorphism from (Pn/P
(0)
n ,⊕) to (Z,+),

and theorem is proved.
An alternative proof (sketch): Proposition 3.1, Item 7 shows that f defined

above is surjective. After this, it is easy to show that f is a homomorphism

(as above) and ker f = P
(0)
n . We next apply the First Isomorphism Theorem

showing that Pn/P
(0)
n

∼= Z for each integer n ≥ 1.

If (G, ∗) is a group and x, y ∈ G, then their commutator [x, y] is the element
[x, y] = xyx−1y−1. For subgroups X, Y of G, we define [X,Y ] = 〈[x, y]|x ∈
X, y ∈ Y 〉, where 〈·〉 denotes the subgroup generated by the elements [x, y].
The commutator subgroup G

′

of G is defined as G
′

= [G,G]. Recall that a
derived series of G (see [8, 9]) is the sequence

G = G(0) ≥ G(1) ≥ G(2) ≥ · · ·G(i) ≥ G(i+1) ≥ · · · ,

where G(0) = G, G(1) = G
′

, and for every i ≥ 0, G(i+1) = (G(i))
′

= [Gi, Gi].
The group (G, ∗) is called solvable (see [9, p. 286] if its derived series reaches
the trivial subgroup {eG} after a finite number of steps.

Adopting these definitions, we can state the following corollary of Theo-
rem 3.6.

Corollary 3.7. The following statements are true:

(1) For every integers i, j ≥ 1, we have Pi/P
(0)
i

∼= Pj/P
(0)
j .

(2) For every integer n ≥ 1, the quotient group (Pn/P
(0)
n ,⊕) is cyclic.

(3) For every integer n ≥ 1, the quotient group (Pn/P
(0)
n ,⊕) is solvable.

Proof. (1) It follows directly from Theorem 3.6 and from the fact that isomor-
phisms are transitive.
(2) Follows from Theorem 3.6.

(3) Since from Item (2) the quotient group (Pn/P
(0)
n ,⊕) is abelian, the result

follows.

We next introduce the concept of pseudo super-magic squares (PSMS)’s
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Definition 3.3. Let n be a positive integer. A pseudo super-magic
square An of order n, is an element of Mn(Z) such that the sum of the numbers
of each row, each column and also the sum of the numbers in both diagonals is
the same number a, the pseudo super magic constant (constant for short).

The set of the PSMS’s of order n is denoted by Ps
n.

Proposition 3.8. The ordered pair (Ps
n,+) is a subgroup of (Pn,+).

Moreover, if the PSMS An has constant a, then Tr(An) = a, where Tr(An)
denotes the trace of the matrix An.

Proof. The null matrix [0]n×n of order n is in (Ps
n,+); it is the identity element

of (Ps
n. It is clear that the sum of two PSMS’s An and Bn with constants a and

b respectively, is a PSMS with constant a+ b. If An is a PSMS with constant
a, then its inverse −An is also a PSMS with constant −a.

The second part follows immediately.

The following result states that suitable subsets of PMS’s are also a group
under multiplication of matrices.

Theorem 3.9. Let Pn be the set of PMS’s of order n. Assume that
P∗
n = {An ∈ Pn | (An)

−1 ∈ Pn}, where (An)
−1 denotes the inverse of An in

Mn(Z) (if there exists). Then the ordered pair (P∗
n, ·) is a group, where · is the

usual product of matrices.

Proof. Assume that An, Bn ∈ P∗
n. From Item 3 of Proposition 3.1, we know that

AnBn ∈ Pn. From definition of P∗
n, we know that if An ∈ P∗

n then (An)
−1 ∈ P∗

n.
Further, (AnBn)

−1 = (Bn)
−1(An)

−1. Since both (An)
−1 and (Bn)

−1 belong to
Pn, applying again Item 3 of Proposition 3.1, we conclude that (AnBn)

−1 ∈ Pn.
Hence (AnBn)

−1 ∈ P∗
n. It is clear that the identity matrix In of order n belongs

to P∗
n. Moreover, In is the identity element of (P∗

n, ·). Therefore, P
∗
n is a group,

as required.

An interesting question that arises is as follows: is it true that if An ∈ Pn

then (An)
−1 ∈ Pn ? The answer for this question is no. A trivial counterexam-

ple is the Loh-Shu magic square




4 9 2
3 5 7
8 1 6


 ,
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whose inverse is



23/360 −13/90 53/360
19/180 1/45 −11/180
−37/360 17/90 −7/360


 .

However, although the latter matrix does not have integer entries, the sum of
the elements of all rows and all columns remains the same. This induces us to
prove the following result.

Proposition 3.10. Let An ∈ Pn be a PMS of order n with constant
a. Then the following hold:
(1) If An has constant a = 0 then detAn = 0. In particular, if An has zero
constant, then An is not invertible.
(2) If An is an invertible PMS of order n, then its inverse (An)

−1 is also a PMS
of order n with entries in R and constant 1/a.
(3) If a 6= 0, then the adjoint matrix Ân is also a PMS of order n with entries
in R.

Proof. (1) Let

An =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann




be a PMS with constant a = 0. Since the determinant detAn is n-linear and
alternating, we have

detAn =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
a(n−1)1 a(n−1)2 · · · a(n−1)n

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
a(n−1)1 a(n−1)2 · · · a(n−1)n

a11 + an1 a12 + an2 · · · a1n + ann

∣∣∣∣∣∣∣∣∣∣∣
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...
...

...
...

=

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
a(n−1)1 a(n−1)2 · · · a(n−1)n∑n

i=1ai1
∑n

i=1ai2 · · ·
∑n

i=1ain

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
a(n−1)1 a(n−1)2 · · · a(n−1)n

0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣

= 0.

Thus detAn = 0, as required.
(2) Let An ∈ Pn be an invertible PMS with inverse (An)

−1 = Bn. From
Item (1), it follows that a 6= 0. Hence,

AnBn =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann







b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bn1 bn2 · · · bnn




=




1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1


 .

There are n systems of equations of the form:

a11b11 + a12b21 + . . . + a1nbn1 = 1

a21b11 + a22b21 + . . . + a2nbn1 = 0
...

an1b11 + an2b21 + . . .+ annbn1 = 0

=⇒

b11[a11 + a21 + . . .+ an1] +
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b21[a12 + a22 + . . .+ an2] +

+ . . .+

bn1[a1n + a2n + . . . + ann] = 1.

Since An is a PMS, it follows that [b11 + b21 + . . . + bn1] = 1/a, where a 6= 0 is
the constant of An.

The n-th system is given by

a11b1n + a12b2n + . . .+ a1nbnn = 0

a21b1n + a22b2n + . . .+ a2nbnn = 0
...

an1b1n + an2b2n + . . . + annbnn = 1

=⇒

b1n[a11 + a21 + . . .+ an1] +

b2n[a12 + a22 + . . .+ an2] +

+ . . .+

bnn[a1n + a2n + . . .+ ann] = 1

=⇒ [b1n + b2n + . . . + bnn] = 1/a.

Therefore, the sum of the elements of each column of Bn equals 1/a.
We next compute the sum of the elements of each row of Bn. To do this,

we consider the product BnAn:

BnAn =




b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bn1 bn2 · · · bnn







a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann




=




1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1


 .

We have more n systems of equations where the first is:

b11a11 + b12a21 + . . . + b1nan1 = 1
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b11a12 + b12a22 + . . . + b1nan2 = 0
...

b11a1n + b12a2n + . . .+ b1nann = 0

which implies

b11[a11 + a12 + . . . + a1n] + b12[a21 + a22 + . . .+ a2n] + . . .

+b1n[an1 + an2 + . . .+ ann] = 1 =⇒ [b11 + b12 + . . .+ b1n] = 1/a.

The n-th system is

bn1a11 + bn2a21 + . . .+ bnnan1 = 0

bn1a12 + bn2a22 + . . .+ bnnan2 = 0
...

bn1a1n + bn2a2n + . . . + bnnann = 1

which implies that

bn1[a11 + a12 + . . .+ a1n] + bn2[a21 + a22 + . . .+ a2n] + . . .

+bnn[an1 + an2 + . . .+ ann] = 1 =⇒ [bn1 + bn2 + . . . + bnn] = 1/a.

Therefore, Bn is also a PMS of order n with entries in R.
(3) Assume first that An is an invertible PMS of order n. We know that

detAn 6= 0 and Ân = detAn · (An)
−1. From Item (1), a 6= 0 and from Item (2),

it follows that (An)
−1 is a PMS of order n and constant 1/a. Therefore, Ân is

also a PMS of order n with constant â = detAn · 1/a.
If An is not invertible, then detAn = 0; so An · Ân = detAn · In = [0]n×n.

In order to avoid overload of the notation, we denote the entries of Ân by bij .
We first consider the case

AnÂn =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann







b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bn1 bn2 · · · bnn




=




0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0


 .
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We then have

a11b11 + a12b21 + . . . + a1nbn1 = 0

a21b11 + a22b21 + . . . + a2nbn1 = 0
...

an1b11 + an2b21 + . . .+ annbn1 = 0

which implies that

b11[a11 + a21 + . . .+ an1] + b21[a12 + a22 + . . . + an2] + . . .+

bn1[a1n + a2n + . . .+ ann] = 0 =⇒ a[b11 + b21 + . . .+ bn1] = 0

=⇒ b11 + b21 + . . .+ bn1 = 0.

Proceeding similarly to all columns of Ân, it follows that the sum of the
elements of each column is equal to zero.

Analogously, let us consider the case

ÂnAn =




b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bn1 bn2 · · · bnn







a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann




=




0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0


 .

We have:

b11a11 + b12a21 + . . . + b1nan1 = 0

b11a12 + b12a22 + . . . + b1nan2 = 0
...

b11a1n + b12a2n + . . .+ b1nann = 0

which implies

b11[a11 + a12 + . . .+ a1n] + b12[a21 + a22 + . . . + a2n] + . . .+
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b1n[an1 + an2 + . . .+ ann] = 0 =⇒ a[b11 + b12 + . . .+ b1n] = 0

=⇒ b11 + b12 + . . .+ b1n = 0.

Proceeding similarly to all rows of Ân, it implies that the sum of the elements
of each row is zero, and there is nothing more to prove.

Remark 3.11. It is interesting to observe that Items (2) and (3) of
Proposition 3.10 are direct methods to obtain new pseudo magic

Here, we consider left ideals, right ideals or two-sided ideals of PMS’s, where
the last means an ideal that is both left and right ideal at the same time.

Let us return our attention to the subgroup P
(0)
n of PMS’s of order n with

zero constant (cf. Proposition 3.5). Such subgroup is, in fact, an ideal in the
ring (Pn,+, ·) of the PMS’s of order n.

Proposition 3.12. Let (Pn,+, ·) be the ring of PMS’s of order n.
Then the following hold:

(1) The set P
(0)
n of PMS’s of order n with zero constant is a two-sided ideal of

Pn.
(2) The set P

(0)
n is closed under difference and under multiplication.

(3) P
(0)
n is not a subring of (Pn,+, ·).

Proof. (1) From Proposition 3.5, we know that (P
(0)
n ,+) is a subgroup of

(Pn,+). Let Rn be an arbitrary PMS of order n and constant r, and An

be a PMS of order n with constant a = 0. To complete the proof, we need
to compute both products RnAn and AnRn. However, from Proposition 3.1
Item (3), it follows that both RnAn and AnRn are PMS’s of order n with zero

constant. Hence, RnAn and AnRn belongs to P
(0)
n , which implies that P

(0)
n is

a two-sided ideal, and we are done.

(2) If An and Bn have zero constant, it is clear that An − Bn, AnBn also
have zero constant.

(3) Note that the identity matrix has constant equal to 1, i.e., In does not

belong to P
(0)
n .

Based on the previous result, one can construct a quotient ring of PMS’s:

Theorem 3.13. Let (Pn,+, ·) be the ring of PMS’s of order n. Then

the ordered triple (Pn/P
(0)
n ,+, ·) is a ring with unit. This ring is called a
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quotient ring of Pn

Proof. From Proposition 3.12, we know that P
(0)
n is a two-sided ideal. Thus,

the multiplication on the quotient abelian group (Pn/P
(0)
n ,+) is well-defined.

From Theorem [5, Theorem 3.1], it follows that (Pn,+) is an abelian group. The

identity is the left coset In + P
(0)
n . The associativity of · and the distributivity

of · with respect to + follow from the properties of multiplication of matrices.

Thus, (Pn/P
(0)
n ,+, ·) is a ring with unit, and the proof is complete.

Proposition 3.14. Let (Pn,+, ·) be the ring of PMS’s of order n and
assume that An ∈ Pn is a PMS with constant a. Then the following hold:
(1) If An is nilpotent then a = 0. The converse does not hold.
(2) If An is idempotent then a = 0 or a = 1. The converse does not hold.

Proof. (1) Let An ∈ Pn be a nilpotent PMS with constant a. Then An 6=
[0]n×n and there exists some positive integer r such that (An)

r = [0]n×n. From
Proposition 3.1 Item (3), it follows that ar = 0. Since Z is an integral domain,
one has a = 0.

To see that the converse is not true, it suffices to take the null PMS [0]n×n

of order n. This PMS has zero constant but it is not nilpotent.
(2) Let An ∈ Pn be an idempotent PMS with constant a; so (An)

2 = An.
Again, from Proposition 3.1 Item (3), one has a2 = a. Therefore, a = 1 or
a = 0.

To verify that the converse is not true, let An be the PMS of order n given
by

An =




n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...

...
...

...
...

−1 −1 −1 · · · n− 1



,

An has constant a = 0, and

(An)
2 =




n(n− 1) −n −n · · · −n
−n n(n− 1) −n · · · −n
−n −n n(n− 1) · · · −n
...

...
...

...
...

−n −n −n · · · n(n− 1)



.
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Since (An)
2 6= An, it follows that An is not idempotent.

Let us now consider the PMS Bn of order n given by

Bn =




0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

... · · ·
...

...
...

1 0 · · · 0 0 0



.

Thus Bn has constant b = 1 but (Bn)
2 6= Bn, that is, Bn is not idempotent.

Since the set of PMS’s forms a Z-module, we can define homomorphism
and isomorphism among PMS’s.

Definition 3.4. Let (Pn,+, ·) and (Pm,+, ·) be two Z-modules of
PMS’s and let h : Pn −→ Pm be a function. We say that h is a homomorphism
of PMS’s if:
(1) for all An, Bn ∈ Pn, h(An +Bn) = h(An) + h(Bn);
(2) for all An ∈ Pn and for all k ∈ Z, h(kAn) = kh(An).

Definition 3.5. Let h : Pn −→ Pm be a homomorphism of PMS’s.
We say that h is an isomorphism if h is bijective.

Remark 3.15. It is easy to see that the isomorphism between PMS’s
is an equivalence relation on the set of all PMS’s.

3.2. Invariant and weak-invariant of PMS’s

In this subsection, we introduce the concept of invariance and weak invariance

of PMS’s. Such definitions are natural, as can be seen in Definitions 3.6 and 3.7
given in the sequence.

Definition 3.6. Let f : Pn −→ Pn be a function. We say that f is a
Pn-invariant if f preserves constants, that is, if An ∈ Pn has constant a then
f(An) ∈ Pn also has constant a.

The set of all Pn-invariant functions is denoted by I(Pn).

Example 3.1. As a trivial example, let n ≥ 1 be a positive integer
and consider the function rij : Pn −→ Pn which changes row i and row j. It is
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clear that, if An ∈ Pn has constant a then the PMS rij(An) has also constant
a. Hence, rij is a Pn-invariant.

The following result establishes that the set of invariant of order n under
composition of functions is a monoid.

Theorem 3.16. The ordered pair (I(Pn), ◦) is a monoid, where ◦ is
the composition of functions. Additionally, (I(Pn), ◦) is a group if and only if
n = 1.

Proof. First of all, it is clear that I(Pn) is nonempty, because the identity
function idPn

: Pn −→ Pn of Pn is Pn-invariant. Further, idPn
is the identity

of (I(Pn), ◦). Let us consider f, g ∈ I(Pn) and let An ∈ Pn be a PMS with
constant a. We first show that the composite f ◦ g is also a Pn-invariant. In
fact, f ◦ g(An) = f(g(An)). Since f ∈ I(Pn), it follows that f(An) ia also a
PMS of order n with constant a. Furthermore, because g ∈ I(Pn), it implies
that f ◦ g(An) is a PMS of order n whose constant is also a. Therefore, the
composite f ◦ g is also a Pn-invariant, that is, the composition is closed. The
associativity follows directly from the associativity of composition of functions.
Therefore, (I(Pn), ◦) is a monoid.

To show the second part, consider that n = 1. In this case, we can identify
the group (P1,+) with the group of integers under the usual addition (Z,+).
It is easy to see that the unique P1-invariant is the identity of P1. Hence
I(P1) = idP1

, that is, (I(P1), ◦) is a (trivial) group. To prove the converse,
we seek a contradiction assuming that n > 1. We must show that (I(Pn), ◦)
fails to be a group. To see this, take the function tn : Pn −→ Pn which
associates to each PMS with constant c ∈ Z the fixed PMS cIn. We know that
for every integer constant c, there exist at least two PMS’s of order n (> 1)
with constant c. Thus, tn is not injective, which implies that tn does not have
inverse. Therefore, (I(Pn), ◦) is not a group.

In the following, we introduce weak invariance for PMS’s.

Definition 3.7. Let h : Pn −→ Pn be a function. We say that h is
a weak Pn-invariant if h preserves multiple of constants. More precisely, there
exists a fixed integer t such that for all An, Bn ∈ Pn with constants a and b
respectively, then h(An), h(Bn) ∈ Pn has constants ta and tb, respectively.

Remark 3.17. (1) Note that for each weak Pn-invariant function h,
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the constant t is fixed.

(2) The set of all weak Pn-invariant functions is denoted by Iw(Pn).

Definition 3.7 motivates us to show the next results.

Proposition 3.18. (1) For every integer t, there exists a weak Pn-
invariant function h : Pn −→ Pn whose constants are multiple of t.
(2) The identity idPn

of Pn is a weak Pn-invariant function with t = 1.

Proof. (1) Define ht : Pn −→ Pn as follows: if An ∈ Pn then ht(An) = tAn.
It is obvious that is weak Pn-invariant: if Bn has constant b then ht(Bn) has
constant tb for all Bn ∈ Pn.
(2) Immediate.

Theorem 3.19. The ordered triple (Iw(Pn),+, ·sc) is a Z-module,
where + is the usual pointwise addition of functions and ·sc is the usual point-
wise multiplication of a function by a (integer) scalar.

Proof. Let f, g ∈ Iw(Pn). We first show that both f + g and kf belong to
Iw(Pn), where k ∈ Z. Let An be a PMS with constant a. Then [f + g](An) =
f(An) + g(An) = t1a+ t2a = (t1 + t2)a, i.e., f + g ∈ Iw(Pn).

Further, [kf ](An) = kf(An) is a PMS with constant kta, hence kf ∈
Iw(Pn). The zero function which associates to every PMS of order n the zero
PMS of order n (that is, the null square matrix of order n) is the identity of
the group. Given f ∈ Iw(Pn), then the function −f is also weak Pn-invariant
and it is the additive inverse of f . The associativity and the commutativity of
+ follow from the associativity and commutativity of the addition of matrices.
The properties of scalar multiplication follow directly from the properties of
addition of matrices and multiplication of a scalar by a matrix.

4. Summary

In this paper, we have characterized the set of pseudo magic squares by showing
new algebraic structures of them. We have shown that the quotient of the
group of PMS’s of order n by its subgroup with zero constant is isomorphic to
the infinite additive group of integers, where the isomorphism is constructed
by means of the magic constants of the corresponding PMS’s. We have also
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explored the ring structure of PMS’s to characterize nilpotent and idempotent
PMS’s. Additionally, we have introduced an invariant and a weak invariant of
PMS’s and we have shown that the set of weak invariants of PMS’s forms a Z-
module under the pointwise addition and scalar multiplication. As future work,
we intend to characterize pseudo magic squares in terms of Category Theory
by investigating products, co-products, equalizers, pullbacks and pushouts. We
will also investigate a possibility of correlation between PMS’s and Matroid
Theory.
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