GENERALIZED CANAVATI TYPE
g-FRACTIONAL POLYA TYPE INEQUALITIES

Abstract

We present here generalized Canavati type $g$-fractional Polya type inequalities. We cover also the iterated case. Our inequalities are with respect to all $L_{p}$ norms: $1\leq p\leq \infty $. We finish with applications.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 5
Year: 2019

DOI: 10.12732/ijam.v32i5.12

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] G.A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph, Springer, New York, 2009.
  2. [2] G.A. Anastassiou, On right fractional calculus, Chaos, Solitons and Fractals, 42 (2009), 365-376.
  3. [3] G.A. Anastassiou, Inteligent Mathematics: Computational Analysis, Springer, Heidelberg, 2011.
  4. [4] G.A. Anastassiou, Intelligent Comparisons: Analytic Inequalities, Springer, Heidelberg - New York, 2016.
  5. [5] G.A. Anastassiou, Generalized Canavati type fractional Taylor’s formulae, J. Computational Analysis and Applications, 21, No 7 (2016), 1205-1212.
  6. [6] J.A. Canavati, The Riemann-Liouville integral, Nieuw Archief Voor Wiskunde, 5, No 1 (1987), 53-75.
  7. [7] A.M.A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz derivatives, Electronic J. of Theoretical Physics, 3, No 12 (2006), 81-95.
  8. [8] G.S. Frederico, D.F.M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem, Internat. Math. Forum, 3, No 10 (2008), 479-493.
  9. [9] R. Gorenflo, F. Mainardi, Essentials of Fractional Calculus, 2000, Maphysto Center, http://www.maphysto.dk/oldpages/events/LevyCAC2000/ MainardiNotes/fm2k0a.ps.
  10. [10] Rong-Qing Jia, Chapter 3. Absolutely Continuous Functions, https://www.ualberta.ca/˜rjia/Math418/Notes/Chap.3.pdf.
  11. [11] G. Polya, Ein mittelwertsats f¨ur Funktionen mehrerer Ver¨anderlichen, Tohoku Math. J., 19 (1921), 1-3.
  12. [12] G. Polya and G. Szeg¨o, Aufgaben und Lehrs¨artze aus der Analysis, Volume I, Springer-Verlag, Berlin, 1925 (In German).
  13. [13] G. Polya and G. Szeg¨o, Problems and Theorems in Analysis, Volume I, Classics in Mathematics, Springer-Verlag, Berlin, 1972.
  14. [14] G. Polya and G. Szeg¨o, Problems and Theorems in Analysis, Volume I, Chinese Edition, 1984.
  15. [15] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Amsterdam, 1993
  16. [English transl. from the Russian, Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka i Tekhnika, Minsk, 1987]. 880 G.A. Anastassiou
  17. [16] E.T. Whittaker and G.N. Watson, A Course in Modern Analysis, Cambridge University Press, 1927.