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Abstract: We consider the fuzzy two-point boundary value problem (FBVP)
subject to some fuzzy boundary conditions on an interval [a, b]. Numerically,
we start by transforming the two-point boundary value problem into a system
of fuzzy initial value problems (FIVP). To solve the resulting system, we use an
improved s—stage Runge-Kutta Nystrom 4th order method adopted to handle
fuzzy problems. Numerical results will be presented to give the numerical details
and to show the efficiency of the method.
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1. Introduction

Many problems in applied sciences and engineering are modeled as fuzzy differ-
ential equations (FDE) that are subject to fuzzy initial or boundary conditions,
see O’Regan and Lakshmikantham [16]. To obtain a closed form solution for
FBVP is generally not an easy task. Instead, numerical approximation is an
efficient tool in the simulation of such problems.

In handling FBVP’s, different approaches where adopted by different au-
thors. One approach based on Zadeh’s extension principle solves the associated
crisp problem then substitute the fuzzy conditions in the solution, see Guo et
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al. [7] and Zadeh [21]. Another approach transforms the FBVP to a crisp one
by interpreting it as a family of differential inclusions, see Hullermeier [8] and
Li et al. [15]. A third approach assumes the solution and the derivatives to be
fuzzy functions although the boundary values are fuzzy, see Lakshmikantham
et al. [14] and O’'Regan and Lakshmikantham [16].

Numerically, many authors solved and produced numerical simulations of
FBVP’s. To list some, the four-stage order Runge-Kutta methods for FDEs
were developed in for example Allahviranloo et al. [1], first order FDEs under
strongly generalized derivatives were considered by Bede et al. [3]. Generalized
Hakuhara differentiability was considered by Chalco-Cano and Roman-Flores
[4] to numerically solve a linear second order FBVP. Existence and uniqueness of
numerical solutions was considered by Fard et al. [5], while in Fatullayev et al.
[6], the authors considered initial value solvers and Gaussian iteration to solve
the systems involved. Solving FDE using Bernstein neural network was done by
Jafaeri et al. [9] while Adams and Nystrorm methods and predictor-corrector
methods for solving FDEs can be found in Khastan and Ivaz [12] and Khastan
and Nieto [13] respectively. Euler method was applied for solving initial value
problem for FDEs in Palligkinis et al. [17] and Runge-Kutta methods and
numerical simulation using general linear method and B-series was done in
Rabiei et al. [18] and Rabiei et al. [19], respectively.

We consider the fuzzy two-point boundary value problem of the form, see
Gue et al. [7] and Li et al. [15]

y'(x) = fz, y(z), ¥'(z)), a<z<b,
subject to the fuzzy boundary conditions
y(a) = a,y(b) = B, where y: [a,b] Xx Rp X Rp — Rp,

is continuous fuzzy valued function and «, 8 are fuzzy numbers and Ry is the
set of fuzzy numbers. Numerically, we start by transforming the fuzzy two-
point boundary value problem into a system of fuzzy initial value problems.
The missing initial conditions at z = a will then be assumed and we solve the
fuzzy initial value problem along the interval. The assumed initial values will
then be corrected using the shooting method so that the numerical solution at
x = b match the given boundary condition at x = b up to a certain tolerance,
for details on the shooting method, see Attili [2], Stoer and Bulirsch [11] and
Keller [20]. The outline of this paper will be as follows. In Section 2, we give the
basic concepts and definitions of fuzzy numbers and fuzzy differential equations.
In Section 3 we explain the shooting method briefly. The extension of the 4th
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order improved Runge-Kutta Nystrom method for treating fuzzy systems is
done in Section 4. Finally and in the last section we present some numerical
details and results.

2. Basic concepts

In order to introduce the fuzzy two point boundary value problem, we need
some basic definitions and notations used in fuzzy calculus. In what follows,
we will adopt a suitable modification of the Hukuhara differentiability termed
as strongly generalized differentiability, which has the advantage of dealing
properly with fuzzy differential equations.

Definition 1. (Kaleva [10]) A fuzzy number u is a fuzzy set v : R —
[0, 1] with normal, convex, and upper semi-continuous membership function of
bounded support.

We will denote the set of fuzzy numbers on R by Rp which means R C Rp.

For practical reasons, we use the parametric form of a fuzzy number u, denoted
by [u]", which is defined as:

{s€eR:u(s)>r} ; re(0,1],
[u]" =

{seR:u(s)>0} ; r=0,

with {.} representing the closure of {.}. Thus, if u is a fuzzy number, then
[u]" = [u1(r),ua(r)], where ui(r) =min{s : s € [u]"} and us(r) =max{s : s €
[u]"} for each r € [0, 1]. As a result, the following is a characterization of fuzzy
numbers that is very convenient in studying fuzzy differential equations. Then
u: R — [0,1] is a fuzzy number with parameterization given by [u1(r), ua(r)]
defined by wu(s) =sup{r : ui(r) < s < wa(r)}. For the operations on fuzzy
numbers, we mainly need to define what is called the Hakuhara difference of
two fuzzy numbers u and v.

Definition 2. Let v and v are two fuzzy numbers, if there exists an element
w € Rp such that v = v + w, then w is the Hukuhara difference denoted by
UO .

Here u© v # u + (—1)v. Now based on this definition, we define fuzzy
derivatives.
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Definition 3. (Kaleva [10]) Let y : [a,b] — Rp and zp € [a,b]. We say
that y is strongly generalized differentiable at xg, if there exists an element
y'(z0) € Rp such that either:

(¢) for each h > 0 sufficiently close to 0, the H— differences y(xo+h)Sy(xo),
y(xo) © y(xo — h) exist and

i Y@+ Sy(xo) _ . ylwo) Sylwo —h)

h—0t h h—0t

=y (o),

(i) for each h > 0 sufficiently close to 0, the H — differences y(z¢)©y(xo+h),
y(zo — h) © y(xp) exist and

lim y(xo) Sy(zo+h) lim y(xo —h) o y(zo) _ J (20).

h—0+ —h h—0+ —h

Here the limit is taken in the metric space (Rp, D) with D the Hausdorff
distance mapping. We say that y is 1— differentiable on [a, 0] if y is differ-
entiable in the sense (i) of the previous definition. Its derivative is denoted by
Dily . Similarly, we say that y is 2— differentiable on [a, b] if y is differentiable
in the sense (i) of the previous definition. Its derivative is denoted by Diy.
Now for the purpose of numerical computations, if we let y : [a,b] — Rp, where
[y ()] = [y1r (2) , y2r (2)] for cach v € [0,1], then [Dly (2)]" = [}, (2) , by ()]
and [Diy(z)]" = [vh, (z),¥}, ()], for more details, see for example Kaleva
[10]. This gives two options to find the derivative of a given fuzzy valued
function. For the second derivative, we have 4 options given as the derivative
of the first derivative; that is, D{ (Diy(z)), D3 (Diy(z)), Di (D3y(z)) and
D; (Dyy (x)) -

Theorem 4. Let D}y : [a,b] — Rp and D3y : [a,b] — Rp, with [y (z)]" =
[y1r (z), yor (x)] for each r € [0,1], then:

1. if Diy is 1— differentiable, then y}, (x) and vy}, (z) are differentiable func-
. T
tions and [D3 1y ()] = [y, (), 5, ()],

2. if D}y is 2— differentiable, then v}, (z) and v, (x) are differentiable func-
. T
tions and [D{ y ()]" = [y5, (2) , 1, (2)],

3. if D}y is 1— differentiable, then v, (z) and yb, (x) are differentiable func-
tions and [D3 1y ()] = [y, () , 1, ()],

4. if Dy is 2— differentiable, then y}, (z) and v}, (z) are differentiable func-
tions and [D3 5y (x)]" = [yf, (x) ,v5, (x)].
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This provides a way to transform a fuzzy differential equation into a system
of ordinary differential equations and for numerical computation and to use a
specific numerical method, there will be no need to use the method in fuzzy
setting but rather directly on the resulting ordinary differential system.

3. The shooting method

Let be given the two-point boundary value problem

y' = fl,y.y) (1)
subject to
u(a) = a, u(b)) = 3. (2)
If f(x,y(x),y'(x)) is linear, it can be written in the form
fl@,y(2), 9/ (2) = p(2)y () + q(=)y(z) + h(z), (3)

in which case the shooting method requires the solution of two linear systems

o' = px) (x) + q(x)u(z) + h(z), ula) =a, v'(b) =0
o' = p(x)o(z) +g(z)v(x), v(a) =0, V'(b) =1, (4)

and the solution in this case is obtained in one step. Then the solution y(z) is
a combination of the two solutions u(z) and v(z) and is given as

o) = (o) + i), )

If f(z,y(x),y (x)) is nonlinear, we start by transforming (1)-(2) to a first order
system of the form

w2

G ) I P g B

subject to the boundary conditions
wi(a) = o, wi(b) = p. (7)

To use the improved Runge-Kutta Nystrom method, let a = 29 < 21 < ... <
Zy, = b be a partition of [a,b]. Let Wj(x,S;) denote the solution of the initial
value problem

w'o= gz, W); W(z;)=Sj;
i o= 0,1,..,m—1.
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Define the mapping H : R™" — R™" by H = {H;} with

Hj = Wj(xj41,55) = Sjyi; - 0<j<m—2,
and
Hy1 = M,So+ MyW—1(2m, Sm-1), (8)

0 0 01
can be written in the form

with M, = [ L0 } and M, = [ 00 } .Let S = (ST, 57,....,8T ), then (8)

H(S) =0, (9)

which is to be solved for S; using Newton’s method given by
S = g0 _ DG(SN)'DG(SY),  i=0,1,..., (10)

where DG(S®™) is the Jacobian matrix of the system. It should be noted here
that there is an equivalence between the shooting (discretized) problem and the
original differential equation to be solved in the limit as m — co. More details
on the equivalence and the shooting technique can be found in for example

Attili 2], Keller [11] and Stoer and Bulirsch [20] (page 486).

4. Fuzzy Runge-Kutta Nystrom method of order 4

The improved s—stage Runge-Kutta (IRK) method for solving special second
order differential equations was given by Rabiei et al. [18]. The method is a
two-step method but requires less number of stages which results in a reduction
of function evaluations compared to the normal Runge-Kutta Nystrom method.
The general form of the IRK is

B 3h , h, 9 L
Yntl = Unt S Un = GUn1t h ; bi (ki — ki—1),
ygﬂ = y; +h blkl — bflkfl + Z bi (]CZ — ]{J,i) s (11)

i=2
with

k1 = f($nu yn)u k_1 = f(linfla yn71)7

i—1
k‘i = f Ty + Cih, Yn + hciy; + h2 Z aijk:j s
7j=1
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i—1
ki = f|@n-1+cih, yn1 +heiyl,_q + RB? Z aijk_; |,
j=1
withi =2, ... ,sand ¢2, €3, ..., ¢s € [0, 1], k; and k_; depend on k; and k_;
for j =1, 2, ...,7—1, s is the number of function evaluations at each step and

depends on the accuracy of the method. Note that k; are evaluated at each
step while k_; are calculated from the previous step.

We are interested in the extension of this method to fuzzy differential equa-
tions to produce the fuzzy improved Runge-Kutta of order 4 (FIRK). To do so,

assume that the approximate solution is given as [y(z)]" = [y1(x;7), ya(z;7)].
Define

(ki (z; y(x;r)]" = [k (x5 y(x37)), kio (25 y(z37))], i =1,...,s.
As before and at each step,

k_it (xn—1; y(zn—1:7)) and k_jz (xpn_1; y(zpn-1;7)), i =1,...,5,

are replaced by ki1 (zn; y(xn;7)) and ko (zn; y(zn;7r)), @ =1,...,s from pre-
vious step. Then the fuzzy improved Runge-Kutta Nystrom method will be
given as follows: For j = 1,2, we have

3h h
Yi(@niiir) = yi(@n;r) + S y5(Tnir) = 595(@n-1i7)

+h2by [kaj (Tn; Y(@n;T)) — k_gj (Tn-1; Y(Tn_1;7))]
+1%bs [ks; (2n; y(nsr)) — kegj (Tn-15 Y(Tn_157))];

Yi(@nt1;r) = yi(znr)
+h[bikij (zn;y(en; 7)) — b1k_1j (Tn_1;y(Tn-1;7))]
+b2 [k2j (0 y(wn;7)) — k_2j (Tn-1; Y(Tn—1;7))]
+b3 [k3j (0 y(wn;7)) — k_3j (Tn-1; y(Tn-1;7))],

where
ki1 (xn; y(wn;7)) = min[f (zp,u); u € [y1(zn;7), y2(za;r)]],
k12 (T y(znir)) = max[f(zn,u); u € [y1(znir), y2(2n; )],
ko1 ('TnS y(ﬂ«“n; ’I”)) = min [f (xn + cah, u) ;

u € [vi1 (T Y(on;7)), vi2 (Tn; y(Tn; )],
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koo (xn; y(wn;7))

k31 (zn; y(wp;r))

k3o (zn; y(wp;r))

with

v11 (T Y(Tn;7))

v12 (Tn; Y(Tn;7))

Va1 (Tn; Y(Tn;7))

V22 (ﬂfn; y(an T))

with the coefficients c¢g

—1 — 19 — =1
stl_EbQ_fb?)

B.S. Attili

max [f (z, + c2h,u);

u € [v11 (Tn; Y(Tni7)), viz (Tn; y(Tasr))]],

min [f (z, + c3h,u);
u € [va1 (Tn; Y(@n37)), Va2 (T Y(xnim))]],
max [f (z, + c3h,u);

u € [va1 (Tn; Y(Tn;7)), va2 (Tn; y(Tns))]],

y1(zn;r
+heay

)

(T3 7) + haoi ki1 (zn; Y(T0i7))
Y2 (Tp;7)

(

/
1
+heayh(zn; ) + h2agikia (Tn; y(za;r)),

y1(zn; 1) + hesyy (Tn;7)
+1° {agik11 (zn; y(znir)) + as2kor (Tn; y(znir))},
Y2(@n;7) + hesys(wns7)
+h* {azikiz (xn; y(n;7)) + asoka (T y(wn; 7))},

_ 3 _ 1 _ _ 9 _
€3 = 4, 21 = 35, az1 = 0,a32 = 35, b1 =

1
4
11
18

5. Numerical details and examples

As explained earlier, and to solve the two-point fuzzy boundary value problem,
there are 4 different systems to be considered based on the type of second
derivatives. They are as follows:

1. The 1 — 1 system:

yi/r :f(xa yl?“(x)u yir(x))7 ygr = f(xu er(l‘)a yéT(aj))7 (12)
subject to the boundary conditions
ylr(a) = qr, y2r(a) = Q2r, ylr(b) = Bir, yQT(b) = Bar. (13)

Note that the other next three systems are subject to the same boundary
conditions given in (13).
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2. The 1 — 2 system:

yir = [ (2, y2r (@), v5.(2)) s w3 = f (2, yar(), 9,(2)) -
3. The 2 — 1 system:

yir = f (2, y2r(2), 1,(2) s v = f (2, var(2), o, (2)) .
4. The 2 — 2 system:

Yir = f (2 yir(@), vor(@)) .y = £ (2, y2r(2), i (@)

To use the shooting method to solve any of the previous 4 systems, we
transform the boundary value problem into an initial value system. This is
done by assuming the missing initial conditions; that is, ¥}, (a) and v}, (a), then
we solve the resulting system subject to the initial conditions

yir(a) = aur, yor(a) = oar, Yi(a) = Sir, yy.(a) = Sy,

using the FIRK method to obtain the solutions y1, (b; Si., Sor) and yo,(b; S1.,
Sor). Then using Newtons iteration, we seek the values Sy, So., up to a given
tolerance, that satisfies

Yir (b, Sl?“7 SZT)_/Blr - O,
Yor (b, Sl?“7 SZT) _/627" -

Now for numerical testing, we consider the following examples:
Example 1: Consider the fuzzy two point boundary value problem:
y'(@)—y(x) = p+1, 0<z<l,
y(0) = 0, y(1)=p,
where p is a triangular fuzzy number whose membership function is
p(s)=max (0, 1—3s), s € R.

The 4 different cases to consider are:

1. The system (12) corresponding to the 1 - 1 differentiability is

yi/r(x) = yi?(a}) + 7, ygr(x) = yér(x) +2-—r
ylr(o) = 0, ?/21"(0) =0; ylr(l) =r—1, ?/21"(1) =1-r
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L
0.1

Figure 1: Left: Solutions yi,(x) and ya,(z) for different values of r;
Right:The exact and the numerical solutions at x = 0.2

2. The system (12) corresponding to the 1 - 2 differentiability is

ylllr(x) = yér(x)+2_7ﬂ’ ygr(x) :y/h“(x)—i_r
y1-(0) = 0, y2.(0) =0; y1.(1) =7 —1, g2 (1) =171

3. The system (12) corresponding to the 2 - 1 differentiability is

ylllr(x) = yllr(x)+2_7ﬂ’ ygr(x) :yéT(ﬂf)—FT
y1-(0) = 0, y2.(0) =0; y1.(1) =7 —1, 2 (1) =1—71.

4. The system (12) corresponding to the 2 - 2 differentiability is

ylllr(x) = yér(x) + 7, yg’l"(x) :yéT(x) +2—r
y1r(0) = 0, y2,(0) =0; y1r(1) =r—1, yo (1) =1—1r.

To implement the shooting method, we first rewrite each system as a first
order initial value system then solve the initial value problems involved using
the FIRK. The solutions corresponding to the 1 - 1 differentiability for different
values of » = 0.0, 0.25, 0.5, 0.75, 1.0 are given in Figure 1 (left). Note
that the upper 4 curves are for y1,.(x) and the lower 4 curves are for yo, () with
the middle for both at r = 1 since they coincide. Figure 1 (right) shows the
solution at x = 0.2 of both the exact and the approximate numerical one. In
Figure 2 we present a 3-D simulation of the solution.

Example 2: Consider the FBVP (see [6]):
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Figure 2: 3-D simulation of the Solution

y' o=y +3y+ f@)
vO = |3e-1.50-1)]
v = |2e-1.2a-0]

with

fir(z;r) = (1—7r)(3—2t) — é (9152 — 9t + 2) (1—7)

- é(9t2 ot 2)(r —1).

for(z;r) = (r —1)(3—=2t)
The solutions of the (1 — 1), (1 —2), (2 —1) and (2 — 2) systems for r =
0.5 are given in Figures 3. The results obtained match with that reported in
Glufatullayev et al. [6].
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